1) linear network coding
线性网络编码
1.
In this paper,principle of network coding,the analysis of linear network coding are briefly presented,including a refinery l.
文章介绍了网络编码的原理、优势,分析了线性网络编码理论,并对其构造方法进行了改进,降低了复杂度。
2.
Aiming at multi-source multicast connection,this paper proposes a linear network coding construction to implement data transmission with maximum throughput.
针对多源组播连接问题,给出运用线性网络编码技术进行数据传输并达到最大吞吐率的编码构造方法。
2) random linear network coding
随机线性网络编码
1.
rlncBT:Based on random linear network coding P2P content distribution system
rlncBT:随机线性网络编码的P2P内容分发系统
2.
The proposed approach uses a genetic algorithm as a search engine,combines with random linear network coding and embeds the strategy of distributed test multicast capacity.
首先对线性网络编码的机理进行分析,得出了不同组播率下编码方案间的内在联系,导出了一个在线测试组播容量的策略;提出的方法以遗传算法为搜索引擎,结合随机线性网络编码,嵌入了在线测试组播容量的策略。
3.
Aiming at random linear network coding,this paper proposes an error control method which combines point-point checking error and end-end retransmission.
针对随机线性网络编码,提出点-点检错和端-端重传相结合的差错控制方法。
3) Q-Learning linear network coding
Q学习线性网络编码
4) General linear local-area network coding
一般线性局域网络编码
5) optimal linear network coding
最优线性网络编码
1.
Distributed construction of optimal linear network coding
最优线性网络编码的分布式构造方法
补充资料:线性预测编码
用线性预测原理降低编码数码率的信号编码。它主要用于话音、图像和遥测信号的编码。信号一般是时间的函数,具有前后相关联的性质(相关性),后面的信号是由前面的信号渐变而来的,知道前面的信号就能对即将到来的信号进行预测。前后信号相关性越强,这种预测就越准确。预测编码不是对连续的信号直接采样后编码(见脉码调制),而是先根据信号的相关性测算,把测算用的参数以及测算值和真实值的误差进行编码。在一般情况下它的编码数码率比直接采样后编码的数码率低得多。
线性预测 预测之前先把信号离散化(采样)。设过去的已知采样值序列为sn-1,sn-2,...,则可用下式预测即将到来的(现时)样值sn
慗n(预测值)=ɑn-1sn-1+ɑn-2sn-2+...
+ɑn-psn-p=ɑn-ksn-k
即把过去的p个样值sn-k分别乘上适当的系数ɑn-k,再累加起来即得到现时样值的预测值。当ɑn-k取实数,则p个样值中任何一个有变化,都使预测值慗n成比例地变化。预测公式是一个线性方程,所以这种预测称为线性预测。式中p称为预测阶数;ɑn-k称为预测系数;真实值与预测值之差en=sn-慗n,称为预测误差。预测的目的就是找出一组合适的系数ɑn-k,使误差en的统计值最小。实际预测过程一般是先把采样序列按一定的数目组成帧,然后逐帧进行预测,每帧都找出该帧的p个最佳预测系数ɑn-k。预测的好坏(精确度)不是以某一个样值的预测结果来衡量,而是要看帧内各样值预测的总效果。在用线性预测编码通信时,把每帧的p个预测系数和各样值预测误差en编码后传输。收信端则利用这些参数来重建原信号。
话音信号预测 话音信号有以下的特性(见声码器):①浊音是准周期信号,邻近周期具有相似的波形,即前后波形按基音周期相关联;②由口、鼻腔构成的声道在传输声源信号时有能量集?星蚬舱穹濉I朗嵌栊郧惶澹豢赡芊⑸槐洌蚨耙粜藕啪哂卸淌奔淠诘南喙匦浴?
根据话音信号的特性,可以取帧长为25毫秒,则每秒有40帧。如果采用8阶预测(p=8),预测系数ɑn-k用4位编码,则预测系数共需40×8×4=1280比特/秒。若信号采样率为6400样值/秒,各样值的预测误差en用1位编码,则需要6400比特/秒。总数码率为7680比特/秒。仅当信号具有相关性并且预测做得相当精确时,才能使预测误差en的统计值很小,从而可以用很少的码位来对它编码。预测系数的分帧表征和预测误差的码位节省,是减少线性预测编码数码率的主要手段。
类型 线性预测可有多种方案。①简单的固定系数预测:预测系数在长时间内不变;②自适应预测:每一帧都重新计算预测系数和预测剩余信号的平均能量等,以便能很好地适应信号的复杂变化;③单级预测:利用信号的短时相关性进行预测;④多级预测:既利用短时相关性又利用前后周期相关性进行预测。在实际运用中,对预测算法、预测系数的表征、编码型式等都要进行优选。目标是减少运算量和存储量,在精度受限时确保预测稳定(不振荡),以及减少测算误差、编码误差和传输差错等因素对重建信号的不良影响。
预测效果 话音线性预测编码器能以脉码调制几分之一的码率提供优于声码器的话音质量,可以通过一个高质量的话路传输。应用线性预测原理的声码器,称为线性预测声码器。频谱包络可以看成是可变滤波器的传输特性。线性预测声码器用线性预测方法求出这个滤波器在每帧内的系数,连同话音的基频一起编码后传输。在收信端利用这些参数来合成话音。它与普通线性预测编码器的主要差别是不传输预测的剩余信号,同时重建话音的方式也不完全一样。预测技术还可作为信号分析的工具用于其他处理设备中,如话音识别、图像处理、数字信号存储等。
预测效果取决于以下诸因素:①对被测信号统计特性的认识;②符合实际统计特性的预测方案;③简捷而高效的预测算法。随着大规模集成电路与计算机技术的发展,线性预测编码技术将在通信和信号处理中发挥更大的作用。
参考书目
J. D. Markel, A. H. Gray, Linear Prediction of Speech, Springer-Verlag, Berlin, Hedelbery,New York, 1976.
线性预测 预测之前先把信号离散化(采样)。设过去的已知采样值序列为sn-1,sn-2,...,则可用下式预测即将到来的(现时)样值sn
即把过去的p个样值sn-k分别乘上适当的系数ɑn-k,再累加起来即得到现时样值的预测值。当ɑn-k取实数,则p个样值中任何一个有变化,都使预测值慗n成比例地变化。预测公式是一个线性方程,所以这种预测称为线性预测。式中p称为预测阶数;ɑn-k称为预测系数;真实值与预测值之差en=sn-慗n,称为预测误差。预测的目的就是找出一组合适的系数ɑn-k,使误差en的统计值最小。实际预测过程一般是先把采样序列按一定的数目组成帧,然后逐帧进行预测,每帧都找出该帧的p个最佳预测系数ɑn-k。预测的好坏(精确度)不是以某一个样值的预测结果来衡量,而是要看帧内各样值预测的总效果。在用线性预测编码通信时,把每帧的p个预测系数和各样值预测误差en编码后传输。收信端则利用这些参数来重建原信号。
话音信号预测 话音信号有以下的特性(见声码器):①浊音是准周期信号,邻近周期具有相似的波形,即前后波形按基音周期相关联;②由口、鼻腔构成的声道在传输声源信号时有能量集?星蚬舱穹濉I朗嵌栊郧惶澹豢赡芊⑸槐洌蚨耙粜藕啪哂卸淌奔淠诘南喙匦浴?
根据话音信号的特性,可以取帧长为25毫秒,则每秒有40帧。如果采用8阶预测(p=8),预测系数ɑn-k用4位编码,则预测系数共需40×8×4=1280比特/秒。若信号采样率为6400样值/秒,各样值的预测误差en用1位编码,则需要6400比特/秒。总数码率为7680比特/秒。仅当信号具有相关性并且预测做得相当精确时,才能使预测误差en的统计值很小,从而可以用很少的码位来对它编码。预测系数的分帧表征和预测误差的码位节省,是减少线性预测编码数码率的主要手段。
类型 线性预测可有多种方案。①简单的固定系数预测:预测系数在长时间内不变;②自适应预测:每一帧都重新计算预测系数和预测剩余信号的平均能量等,以便能很好地适应信号的复杂变化;③单级预测:利用信号的短时相关性进行预测;④多级预测:既利用短时相关性又利用前后周期相关性进行预测。在实际运用中,对预测算法、预测系数的表征、编码型式等都要进行优选。目标是减少运算量和存储量,在精度受限时确保预测稳定(不振荡),以及减少测算误差、编码误差和传输差错等因素对重建信号的不良影响。
预测效果 话音线性预测编码器能以脉码调制几分之一的码率提供优于声码器的话音质量,可以通过一个高质量的话路传输。应用线性预测原理的声码器,称为线性预测声码器。频谱包络可以看成是可变滤波器的传输特性。线性预测声码器用线性预测方法求出这个滤波器在每帧内的系数,连同话音的基频一起编码后传输。在收信端利用这些参数来合成话音。它与普通线性预测编码器的主要差别是不传输预测的剩余信号,同时重建话音的方式也不完全一样。预测技术还可作为信号分析的工具用于其他处理设备中,如话音识别、图像处理、数字信号存储等。
预测效果取决于以下诸因素:①对被测信号统计特性的认识;②符合实际统计特性的预测方案;③简捷而高效的预测算法。随着大规模集成电路与计算机技术的发展,线性预测编码技术将在通信和信号处理中发挥更大的作用。
参考书目
J. D. Markel, A. H. Gray, Linear Prediction of Speech, Springer-Verlag, Berlin, Hedelbery,New York, 1976.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条