1) neighborhood size
邻域大小
1.
However,they are based on the assumption that the whole data manifolds are evenly distributed so that they determine the neighborhood for all points with the same neighborhood size.
为此,提出一种邻域大小动态确定的新局部线性嵌入方法。
2.
the neighborhood size;however,it s an open problem how to do this efficiently.
ISOMAP算法能否被成功应用依赖于其唯一参数——邻域大小的选取是否合适,然而,如何高效地选取一个合适的邻域大小目前还是一个难题。
3.
The success of ISOMAP depends greatly on being able to choose a suitable neighborhood size, however, it is still an open problem how to do this effectively.
ISOMAP算法能否被成功运用,很大程度上依赖于邻域大小的选取是否合适。
2) Accelerated Neighborhood
邻域大小可变
3) nearest-neighborhood
最小邻域
1.
This report adopts the improved nearest-neighborhood clustering algorithm to determine the number of the clustering according to the density of input-output data s distribution, and then the Fuzzy C-means clustering algorithm is used to generate the optimal fuzzy rules.
本文先采用改进的最小邻域算法,根据输入输出数据的分布,灵活的划分模糊集合,确定聚类个数,然后将聚类个数和聚类中心点作为模糊C均值算法中的初始聚类个数和初始聚类中心,对样本进行了最优的模糊规则划分。
5) infinitesimal neighborhood
无限小邻域
1.
Adopting a limit process, the space time metric of the second order infinitesimal neighborhood nearby the horizon pole of a Kerr Newman Kasuya black hole is obtained.
利用极限法得到了Kerr Newman Kasuya(K N K)黑洞视界极点处二级无限小邻域的度规 ,并证明这个时空度规是以常角速度转动的Rindler度规 。
2.
By using a limiting process, the space time metric of the second order infinitesimal neighborhood nearby one of the two horizon poles of a Kerr Newman black hole is obtained.
利用极限方法得到了Kerr Newman(K N)黑洞视界极点处二级无限小邻域的时空度规 ,并且证明这个时空度规是以常角速度转动的Rindler度
6) small world neighborhood
小世界邻域
1.
By analyzing the invalidity reason of the local linear embedding(LLE) algorithm in case of the sparse data or the high noise data,small world neighborhood optimization LLE algorithm(SLLE) is proposed based on the complex networks theory.
通过分析稀疏数据或噪声数据,导出局部线性嵌入(LLE)算法出现失效的原因,由此提出了一种基于小世界邻域优化的局部线性嵌入(SLLE)算法。
补充资料:超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)
超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)
伦敦第二个方程(见“伦敦规范”)表明,在伦敦理论中实际上假定了js(r)是正比于同一位置r的矢势A(r),而与其他位置的A无牵连;换言之,局域的A(r)可确定该局域的js(r),反之亦然,即理论具有局域性,所以伦敦理论是一种超导电性的局域理论。若r周围r'位置的A(r')与j(r)有牵连而影响j(r)的改变,则A(r)就为非局域性质的。由于`\nabla\timesbb{A}=\mu_0bb{H}`,所以也可以说磁场强度H是非局域性的。为此,超导电性需由非局域性理论来描绘,称超导电性的非局域理论。皮帕德非局域理论就是典型的超导电性非局域唯象理论。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条