1) linear complementary constraints
线性互补约束
1.
A technique of reducing dimension on sequential system of linear equations algorithm for optimization with linear complementary constraints;
线性互补约束优化序列线性方程组算法的一个降维技术
2.
We consider a mathematical program with linear complementary constraints (MPLCC).
线性互补约束优化问题(简称MPLCC)是一类特殊的非线性约束优化问题,其中存在由线性函数构成的互补约束项。
3.
Equilibrium problem with linear complementary constraints can be reformulated as the solution to a smoothing nonlinear system of equations by means of a complementary function and the smoothing approximation method.
利用一个新的互补函数及光滑近似法的思想将线性互补约束均衡问题转化为等价的光滑非线性方程组来求解。
2) Nonlinear complementarity constraints
非线性互补约束
1.
A kind of nonlinear complementarity constraints with equilibrium problems is studied.
研究了一类非线性互补约束的均衡问题。
4) complementarity constraints
互补约束
1.
A special kind of optimization problems with linear complementarity constraints was studied.
本文讨论线性互补约束规划问题。
2.
Generator reactive limiter, load tap changing limiter and static var compensator adjust limiter were modeled by nonlinear mixed complementarity constraints and incorporated into the optimization problem to determinate critical point of voltage stability of power systems.
通过临界点的互补约束的严格性条件和拉格朗日乘子快速判断临界点的类型。
3.
As we know, optimization problems with complementarity constraints have a wide application in economy, engineering design, game theory, making decision and so on, so in recent years there has been a growing literature on these important optimization problems.
由于带互补约束的优化问题在经济、工程技术、对策决策等领域有着广泛的应用,因此,对此类问题的研究备受关注。
5) smooth complementarity constraints
光滑化互补约束
6) MPCC
互补约束问题
1.
The main results are as following: A parameterized equivalent formulation of MPCC is obtained by using the La-grangian multiplier function, and an approach of modifying multiplier with the active-setproperty is presented.
利用Lagrange乘子函数建立了关于一般形式互补约束问题的含参等价非线性规划模型,并给出了具有积极集性质的乘子参数修正方法。
补充资料:线性约束
分子式:
CAS号:
性质:任何一个方案都必须满足一定的条件,这些条件称为约束条件。具有线性等式和(或)线性不等式的约束条件,称为线性约束。如一组等精度测定值x1,x2,…,xn,其线性约束条件为
CAS号:
性质:任何一个方案都必须满足一定的条件,这些条件称为约束条件。具有线性等式和(或)线性不等式的约束条件,称为线性约束。如一组等精度测定值x1,x2,…,xn,其线性约束条件为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条