1) block diagonal dominant
块对角占优
1.
When the system is strictly block diagonal dominant,the PBOA is highly parallel and provides an solution that equals the exact solution within machine accuracy with finite communications between adjacent processors.
基于并行计算的分治思想,对于严格块对角占优的块三对角线性方程组提出一个可扩展的块重叠分割并行近似求解方法(PBOA方法)。
2) block diagonally dominant
块对角占优
1.
Let A be a strictly block diagonally dominant matrix,the norms for blocks of its inverse were estimated.
设n阶阵A为严格块对角占优阵,给出了其逆阵A-1的块元素的范数估计;进而若A为非奇异M-阵,得到了AoA-1最小特征值新的下界估计,且该下界不小于2/n。
4) block diagonal dominance
块对角占优性
5) block diagonally dominant matrices
块对角占优阵
1.
Block diagonally dominant matrices and Khatri-Rao product are combined, some properties of Khatri-Rao product of block diagonally dominant matrices and gencralized block diagonally dominant matrices are get.
将块对角占优矩阵与Khatri Rao积相结合,讨论了块对角占优阵及广义块对角占优阵的Khatri Rao积的性质。
6) diagonally dominant
对角占优
1.
In this paper, some new judging criterions for M-matrices have been presented by using the double diagonally dominant matrix and generalized the concluded results in [1]~[8].
利用矩阵的双对角占优性给出了矩阵为非奇M矩阵的新判定准则,推广了已有的判定定理。
2.
In this paper,the estimates of upper bounds for the spectral radius of the iterative matrix M~(-1)N for some generalized diagonally dominant matrix M are presented.
对几类广义对角占优矩阵M,给出了迭代矩阵M~(-1)N谱半径的上界估计式,所得结果较已有结果适用于更加广泛的矩阵类。
3.
A new digital watermarking algorithm based on diagonally dominant matrix is proposed.
提出了一种基于对角占优矩阵的数字水印算法。
补充资料:分块对角算子
分块对角算子
block - diagonal operator
分块对角算子)bl以尘一山ag00al 01犯m妞;皿泌~即~。~云.州四T叩}关于凡lbert空间H的一个给定的正交分解H=艺、1。从的 H卜一个线巴算子滩,它对每个子空间H*(k妻l)是不变的A的谱是诸“分块”Af,,、二A、(人)l)的谱的并的闭包、{引}二、、甲‘、到戍;在广泛的意义下,个分块对角算f是在氏l忱rt空间的直接积分中乘以函数又的算一护,组- H一石。““,“风‘’,‘A“‘’二·“)f(‘’,‘任M·这银又(t)是作用了空间H(r)上的线性算子.每个与-个正规算子交换的算r,关于这个止规算子的谱分解,是个分块对角算一J几.亦见对角算子(diagonal operator).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条