1) palmprint segmentation
掌纹图像分割
2) palmprint image
掌纹图像
1.
Novel algorithm for Region of Interest(ROI)extraction of palmprint images;
一种新的掌纹图像感兴趣区域提取算法
2.
The Enhancement and Denoising of Palmprint Image Based on Partial Differential Equations;
基于偏微分方程的掌纹图像增强与去噪
3.
Because of the concurrence of translation and rotation between the different palmprint images, the algorithm presented is based upon phase correlation with rotational compensation, and then paraboloid surface fit will be conducted in order to improve matching accuracy to subpixel level.
基于每次测量时所采集掌纹图像之间同时存在平移和旋转变化,先对图像进行空域旋转校正,然后利用相位相关方法进行相关匹配,并通过二次曲面拟合方法使平移变化的检测精度达到亚像元级,从而达到精确定位。
3) palmprint images
掌纹图像
1.
First,traditional median filter is utilized to reduce system noises effectively,and threshold segment method is applied to palmprint images for image segment.
重点研究实现掌纹方位无关性匹配的掌纹图像预处理算法。
4) fingerprint segmentation
指纹图像分割
1.
The task of fingerprint segmentation is to isolate the fingerprint area from the image background.
指纹图像分割指从图像背景中分离出有用的指纹区域的过程。
2.
To incorporate labeled and unlabeled data together,this paper proposed CoSeg,a semi-supervised fingerprint segmentation algorithm.
指纹图像分割是自动指纹识别系统预处理中最关键的技术之一。
5) texture image segmentation
纹理图像分割
1.
Graph semi-supervised texture image segmentation combined with Nystrm
结合Nystrm逼近的图半监督纹理图像分割
2.
To verify the proposed algorithm,we apply it to texture image segmentation with satisfactory results.
为了将谱聚类算法应用于大规模聚类问题,该文提出一种两阶段纹理图像分割算法,采用改进的分水岭算法进行预分割,然后用特征值尺度化特征multiway谱聚类算法进行最终分割。
6) fingerprint image segmentation
指纹图像分割
1.
Research on fingerprint image segmentation based on pulse coupled neural networks;
脉冲耦合神经网络在指纹图像分割中的应用
2.
This paper proposed novel fingerprint image segmentation method based on linear support vector machine to overcome some shortage in the present literatures.
针对现有指纹分割方法存在的不足,提出了一种基于线性支持向量机的指纹图像分割方法。
补充资料:图像分割
把图像分解为一些特定的性质相似的部分(区域或对象),并用这些部分对图像进行分析和描述。一幅图像往往包含许多不同类型的区域,如物体、环境和背景等。图像分析的一个重要方法就是用它们作为基本组成成分对图像进行描述。例如为了在气泡室图片中检出质点碰撞形式并判定其发生位置,就要在图像中分割出气泡的轨迹及其端点。为了从输入的文本中识别出一串字符,首先就要把各个字符从背景和其他字符中分离出来。因此把图像分割为若干子图像,并利用各子图像的特性和它们之间的关系描述图像,对于图像识别和解释、物景分析以及图像的分块处理和存储都有很大的意义。
图像分割基本上是对像素进行分类的过程。例如用某个灰度阈值把图像像素分成"黑"和"白"两类,就可以把黑的对象同白的背景区分开。常用的分割方法有灰度等级阈值法、谱和空间分类法、区域生长法和边缘检测法。
灰度等级阈值法 在图像只有两种组成部分的情况下,图像灰度的直方图常常呈现两个峰值。用两个峰值之间的谷值所对应的灰度作为阈值,把所有像素灰度大于或等于阈值的作为一类,小于阈值的作为另一类是一种最基本的两类分割方法。实际应用时为了改善分类的可靠性,可以利用某些附加的信息(例如已知两类区域的面积之比)使阈值的选择更加合理。在类别更多的情况下,可以采用多级阈值把各类分割开来(例如确定两个阈值,就可以把细胞图像分割为胞核、胞浆和背景三部分)。类别越多,图像直方图的峰值就越不明显,分割就更为困难。
谱和空间分类法 对于彩色和多光谱图像,可以用像素的几种性质(颜色和谱信号)对像素作比较精细的分类。对于黑白图像,用包括像素本身灰度在内的一组局部性质(例如该像素邻域灰级的均值)在多维空间中进行分类。对于一些复杂图像,这种方法比单独的灰度阈值法效果更好。
区域生长法 这是一种从图像中提取区域或实体的序贯分割法。根据灰度、纹理的均匀性、同背景的对比度以及区域、形状、尺寸等准则,把性质大致相同的邻近像素组合在一起以形成分割区域。
边缘检测法 用于获取图像内物体轮廓的分割方法。一般采用曲线拟合、轮廓跟踪或边缘点连接等技术求出物体的边界。此外,若对像素的类别给以某种概率度量或隶属度,则可以对像素反复进行分类,这就成为松弛迭代分割算法。这种算法有较好的效果,在图像分析中已得到广泛应用。
图像分割基本上是对像素进行分类的过程。例如用某个灰度阈值把图像像素分成"黑"和"白"两类,就可以把黑的对象同白的背景区分开。常用的分割方法有灰度等级阈值法、谱和空间分类法、区域生长法和边缘检测法。
灰度等级阈值法 在图像只有两种组成部分的情况下,图像灰度的直方图常常呈现两个峰值。用两个峰值之间的谷值所对应的灰度作为阈值,把所有像素灰度大于或等于阈值的作为一类,小于阈值的作为另一类是一种最基本的两类分割方法。实际应用时为了改善分类的可靠性,可以利用某些附加的信息(例如已知两类区域的面积之比)使阈值的选择更加合理。在类别更多的情况下,可以采用多级阈值把各类分割开来(例如确定两个阈值,就可以把细胞图像分割为胞核、胞浆和背景三部分)。类别越多,图像直方图的峰值就越不明显,分割就更为困难。
谱和空间分类法 对于彩色和多光谱图像,可以用像素的几种性质(颜色和谱信号)对像素作比较精细的分类。对于黑白图像,用包括像素本身灰度在内的一组局部性质(例如该像素邻域灰级的均值)在多维空间中进行分类。对于一些复杂图像,这种方法比单独的灰度阈值法效果更好。
区域生长法 这是一种从图像中提取区域或实体的序贯分割法。根据灰度、纹理的均匀性、同背景的对比度以及区域、形状、尺寸等准则,把性质大致相同的邻近像素组合在一起以形成分割区域。
边缘检测法 用于获取图像内物体轮廓的分割方法。一般采用曲线拟合、轮廓跟踪或边缘点连接等技术求出物体的边界。此外,若对像素的类别给以某种概率度量或隶属度,则可以对像素反复进行分类,这就成为松弛迭代分割算法。这种算法有较好的效果,在图像分析中已得到广泛应用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条