1) hypersphere
['haipə(:),sfiə]
超球体
1.
Theoretically makes a study of the volume and several properties of hyperspheres detector in real-valued shape-space to analyse the reason of this high complexity.
针对实值否定选择算法中最常采用的超球体检测器,在理论上研究了它的体积,以及体积随半径和维数变化的性质,以此分析了高复杂性出现的原因。
2) Solid balls with supper precision
超精球体
3) hyperellipsoid
[,haipəri'lipsɔid]
超椭球体
1.
The hyperellipsoid equation is used to describe the shape of small particles,and the surface of these particles is drawn and discretized using Matlab.
利用超椭球体方程描述粒子形状,用Matlab实现粒子形状的的绘制并离散粒子表面。
4) superconducting sphere
超导球体
1.
On the basis of the classic electromagnetic field theory and London equations,a calculation model was founded for the magnetic torque of a superconducting sphere with high rotating speed in a uniform magnetic field.
基于经典的电磁场理论和伦敦方程,为在均匀磁场中高速旋转的超导球体所受力矩的计算建立了理论分析模型。
5) minimal hyper-sphere
最小超球体
1.
Two fast algorithms for classification are presented in this paper--halving the nearest points and dividing the nearest points proportionally based on the minimal hyper-sphere.
文章提出了两种快速分类的方法——基于最小超球体的平分最近点法和基于最小超球体的按比例划分法。
6) superconductive spherical shell
球壳超导体
1.
Discussion on the shielding coefficient of superconductive spherical shell;
球壳超导体屏蔽系数的研究
补充资料:空心超导球体(hollowsuperconductingsphere)
空心超导球体(hollowsuperconductingsphere)
设内外半径分别为r1和r2(r1≤r≤r2),壁厚d=r2-r1的第一类超导体的空心球体处于外磁场强度H0中。令ζ=r/δ,Δ=d/δ,δ=δ0/ψ,δ0为大样品弱磁场穿透深度,ψ是有序参量。设H1和M分别是空腔中磁场强度和样品磁矩。按GL理论,徐龙道和Zharkov给出的部分主要结果如下:
`\zeta_1\gt\gt1`和$\Delta\gt\gt1$时,
H1=6H0ζ2ζ1-2e-Δ,
M=-H0r23(1-3δ/r2)/2
所以对厚壁样品,腔内H1≈0,只要H0低于临界磁场,球壳层可视为磁屏蔽物,样品可利用为磁屏蔽体。对$\zeta_1\gt\gt1$和$\Delta\lt\lt1$的情形,则
H1=H0/(1 ζ1Δ/3),
M=-H0r23[1-1/(1 ζ1Δ/3)]/2
可见,若$\zeta_1\Delta\gt\gt1$,则$H_1\lt\ltH_0$或H1≈0。所以,虽然$d\lt\lt\delta$,但磁场仍被屏蔽而很难透入空腔,称ζ1Δ/3为空心超导球体的屏蔽因子。相反,$\zeta_1\Delta\lt\lt1$,则H1≈H0,球壳层几乎不起屏蔽磁场的作用。对M讲,也可作同样讨论。此外,类似于实心小样品,也可求出各种临界磁场HK1,HK,HK2和临界尺寸等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条