1) iterative heteroscedastic variances estimation
迭代异方差估计
3) Iterative Bayes estimate
迭代Bayes估计
1.
For the grouped, timing terminated and zero-failure data, the paper presents iterative Bayes estimate and iterative hierarchical Bayes estimate of failure probabilities.
对分组定时截尾无失效数据,文中提出了失效概率的迭代Bayes估计和迭代多层Bayes估计,给出了迭代估计的两个性质。
4) variance estimate
方差估计
1.
Regression imputation under incomplete auxiliary information and its variance estimate;
辅助变量不完全情形下的回归插补及其方差估计
2.
In this peper, it is shown that combined uncertainties(or variance estimates) in indirect measurements have different number of degree of freedom to independent and dependent direct measured quantities.
合成不确定度(或方差估计)的自由度在直接测量量独立和不独立时并不相同。
3.
For missing data,based on the unbiased estimation of the population quantity of the non-responser of the interest variables and the auxiliary variables,regression imputation using response probability and its variance estimate are formulated by resampling technologies such as Jackknife and Bootstrap.
对于缺失数据,本文根据目标变量和辅助变量的无回答者总体总量的无偏估计,利用再抽样(复制)技术,构造了使用回答概率的回归插补;进而,利用再抽样(复制)技术,得到了该插补估计的方差估计;并进行了大量模拟,模拟结果表明使用回答概率的回归插补估计及其方差估计具有良好的性质。
5) Variance estimation
方差估计
1.
A study of variance estimation of kalman filtering method;
卡尔曼滤波法方差估计的理论研究
2.
A new method of variance estimation based on wavelet packet de-noising;
一种新的基于子波包去噪的方差估计方法
3.
Dynamic compensation based on noise variance estimation and model reference for sensors
基于噪声方差估计和模型参考的传感器动态补偿
6) variance-estimation
方差估计
1.
In order to solve the disadvantage that the variance-estimation algorithm based on the constant window length can not follow noise changes accurately in multi-sensor data fusion,a new variance-estimation algorithm is proposed,based on alternating the window length according to noise changes.
针对多传感器数据融合中,恒窗长方差估计算法对噪声变化跟踪能力不强的缺点,提出了一种根据噪声变化自适应调整窗长的方差估计算法。
2.
The validity,accuracy and actual time of the algorithm for batched-estimation,self-adaptive weighting and variance-estimation are studied in multi-sensors data fusion.
研究了有关分批估计、自适应加权和方差估计算法在多传感器数据融合中的有效性、准确度和实时性。
补充资料:方差估计值
分子式:
CAS号:
性质:由样本测定值计算的方差S2,称为样本方差,S2是总体方差σ2的无偏估计值。因此,S2又称为方差估计值或估计方差。S和σ分别为样品测定值的标准差和样本总体呈正态分布的标准差。
CAS号:
性质:由样本测定值计算的方差S2,称为样本方差,S2是总体方差σ2的无偏估计值。因此,S2又称为方差估计值或估计方差。S和σ分别为样品测定值的标准差和样本总体呈正态分布的标准差。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条