1) one dimensional spatial
一维空间序列
3) space sequence
空间序列
1.
Thinking about introducing space sequence concept;
关于引入空间序列概念的思考
2.
It is mainly the light and space sequence that create the four-dimensional space.
光和空间序列是创造四维空间的主要元素。
3.
Gate plays an important role because it is start-point of space sequence of the acrhitectural group,it has funcitons in protection,traffic and culture.
大门是建筑群体空间序列的起点 ,位置重要 ,它具有防卫、交通、文化等功能。
4) spatial sequence
空间序列
1.
The application of contrast in spatial sequence design;
对比在空间序列设计中的运用
2.
The essay makes initial discussions of different kinds of rhythms in architectural spatial sequence to approach to the practical significance of rhythms.
文章对建筑空间序列中常见的节奏状况进行初步分类,探讨节奏的表现意义。
3.
The spatial characteristics of Yunnan Dali Shuanglang town street were introduced from street distributing situation,street spatial sequence, spatial scale,ecological landscape,paving art and street life.
从街巷的分布情况、街巷的空间序列、空间尺度、生态景观、铺装艺术、街巷生活等方面介绍了云南大理双廊镇的街道空间特色,指出在进行旅游开发的同时,应注意保留和发扬街道的空间特色,从根本上保护双廊特色景观。
5) sequential space
序列空间
1.
This paper proves that a weakly-sequential space X with a σ-weakly hereditarily closure-preserving sn-network has a σ-compact finite sn-network.
文中证明了一个具有σ-弱遗传闭包保持sn-网的弱序列空间具有-σ紧有限sn-网。
2.
We showthat a mapping froma sequential space is continuous iff it is sequentially continuous,whichi m-proves a result by relaxing first-countability of domains to sequentiality.
证明了序列空间上的映射是连续映射当且仅当它是序列连续映射,这一结果减弱了通常要求的定义域空间的第一可数性。
3.
By this result,we will know that a sequential space with a point-countable cs~*-network is a D-space.
由此结论,我们得到一序列空间若有点可数cs~*-网络,则X是D-空间。
6) space series
空间序列
1.
If the data sequence of all seismic prospecting signal traces at the same moment is regarded as a complicated function of the strata in some region and their geological parameters, it is a space series of seismic prospecting signal.
当把地震勘探信号各道间对应于同一时刻的数据序列看作是反映一定范围内地层及其地质参数的复杂函数时,便构成了地震勘探信号的空间序列。
补充资料:序列空间
序列空间
sequential space
序列空间〔哟叩.如1即ace;“畔职“幼~enpoc印明-c,01 一拓扑空间(top0fogi(元sPace)X,使得若A Cx且A护工AI(即集合A是非闭的),则存在A的点序列x*(k二1,2,…)收敛于【A〕\A的点·若x〔【Al C=X总蕴含:存在A的点的序列戈*收敛于x,则x称为Fr良het一y孙I以班空间(Fr白比t一U郎。恤sPaCe).M .H .B璐加exoc盆浦撰【补注】序列空间构成所有拓扑空间的范畴的余自反子范畴(见自反子范畴(化趾成ive su肠把即即);余自反射是把具有拓扑结构的任意空间用下列方式再拓扑化而得到的:一个子集是闭集的充要条件是,它在序列的极限(按通常的拓扑)下是闭的.满足第一可数公理(腼t~mofcoUntab习ity)的空间总是序列空间(实际上,是F苗出et.yPblc佣空间),而序列空间构成包含所有第一可数空间的最小余自反子范畴.因此,以往对第一可数空间证明的许多拓扑结论,都可以很容易地推广到序列空间.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条