1) implicit iterative scheme
隐式迭代格式
2) implicit iteration
隐迭代格式
1.
Let x-0(∈K) and α-n(0,1),the implicit iteration sequence{x-n}defined by x-n=α-nx-(n-1)+(1-α-n)T-nx-n,n≥1.
对x0∈K与{αn}[0,1],隐迭代格式{xn}定义为xn=αnxn-1+(1-αn)Tnxn,n≥1。
3) implicit iteration method
隐迭代格式
1.
In this paper,a new class of three-order implicit iteration method with a finite family of Lipschitz mappings on a nonempty,closed and convex subset of a Banach spaces X is introduced,the reasonability of it is proved by using Banach fixed point theorem and the convergences of the iterations in it are proved respectively under suitable conditions.
在Banach空间X的非空闭凸子集上引入了一类新的带有限李普希兹算子集三阶隐迭代格式,借助于压缩映像原理证明了迭代格式定义的合理性,在适当的条件下,证明了该迭代格式中各个点列的收敛性。
4) system of implicit iteration process
隐格式组迭代
1.
The purpose of this paper is to establish the system of implicit iteration process for common fixed points of a finite family of strictly pseudocontractive mapings and to prove the convergerce theorems and some results of the implicit iteration process for common.
本文建立了严格伪压缩映像族的隐格式组迭代过程,进而证明了隐格式组迭代过程逼近严格伪压缩映像族的收敛定理及相关结果。
5) Implicit iteration
隐式迭代
1.
For the sake of the stability of its solution, the increment of each step is given by the implicit iteration method.
在实际计算中采用有限维试验函数空间对模型进行离散,每次迭代的增量由隐式迭代方法给出,以增强求解的稳定
6) iterative scheme
迭代格式
1.
In this paper,Ishikawa iterative schemes with mixed errors are studied,method of proof and technique are improved.
将Ishikawa型迭代格式的收敛性问题推广到带混合误差的Ishikawa型迭代格式的情形 ,同时所用的证明方法和技巧有所改
2.
By making use of monotone iterative technique,the iterative scheme and existence theorem of positive solution are established for a nonlinear second-order boundary value system.
利用单调迭代方法对一个非线性二阶边值系统建立了正解的迭代格式和存在性定理 。
补充资料:层层迭迭
1.见"层层迭迭"。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条