说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 蓄积方程
1)  stand volume growth equation
蓄积方程
2)  storage equation
蓄水方程式
3)  impoundment engineering volume
蓄水工程容积
1.
The kinds and the characters of concentration of Fenggang county are stated,the computational method of impoundment engineering volume and catchment area of a family for 4 people is given.
阐述了凤冈县常用集流面种类及各自的特点,以及一户四口之家雨水集蓄利用的蓄水工程容积、集流面积的计算方法。
4)  integral equation
积分方程
1.
Computation of array induction logging response using integral equations;
利用积分方程计算阵列感应测井响应
2.
Multi-constraint smooth method for solving fredholm integral equation of first kind;
第一类Fredholm积分方程的多重约束光滑化方法
3.
Elimination of the singularity of integrands in the integral equation of harmonic electromagnetic field;
交变电磁场积分方程被积函数奇异性的消除
5)  Integral equations
积分方程
1.
Study of live line measurement of parameters of transmission lines with mutual inductance based on integral equations;
基于积分方程的互感线路参数带电测量研究
2.
The application of fixed point theoretics to a kind of integral equations;
不动点理论在解一类积分方程中的应用
3.
But the abailable first or the second kind of integral equations are illposed, so that the regularization methods are used.
积分方程方法是求解波动逆问题的一种新的方法 ,它利用积分算子有效地将散射物边界数据遇射到远场或者近场测试的数据上 ,在已知散射物的初始物形和一些特征时 ,能给出较好的重构效果 ;但是 ,所得的第一类和第二类积分方程是不适定的 ,这样就需要用到正则化方法。
6)  integrable equation
可积方程
1.
By associating the spin vector of the inhomogeneous generalized Heisenberg ferromagnet with the binormal to a moving curve in Minkowski space, the corresponding equivalent coupled inhomogeneous integrable equation is present.
通过将非均匀推广的海森堡铁磁链的自旋矢量取为闵可夫斯基空间中曲线的次法矢量,得到相应的耦合的非均匀可积方程。
2.
Meanwhile,the author proves that the e- quation of homogenous type is an integrable equation and gets some new integrable differential equations of first order, including Reeeati equation and Bernoulli equation.
对一阶常微分方程中的齐次方程的推广形式——齐次型方程进行了研究,并将齐次方程的"变量变换"法求解过程推广应用到齐次型方程,从而证明了齐次型方程是可积方程,得到了一阶微分方程的几种新的可积类型,其中也包括部分黎卡提方程和贝努利方程。
3.
In particular,many integrable equations arise naturally from motions of curves and surfaces.
特别地,许多可积方程都自然地产生于曲线和曲面运动。
补充资料:泊松方程和拉普拉斯方程
      势函数的一种二阶偏微分方程。广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。
  
  简史  1777年,J.L.拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量mk除以它们到任意观察点P的距离rk,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
  
  静电场的泊松方程和拉普拉斯方程  若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:
  
   ,
  式中ρ为自由电荷密度,纯数 εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程
  
   。
  在各分区的公共界面上,V满足边值关系
  
  
  
  
  式中i,j指分界面两边的不同分区,σ 为界面上的自由电荷密度,n表示边界面上的内法线方向。
  
  边界条件和解的唯一性  为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
  
  边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
  
  除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。
  
  静磁场的泊松方程和拉普拉斯方程  在SI制中,静磁场满足的方程为
  
  
  式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述:
  
  
  
  在各向同性、线性、均匀的磁媒质中,传导电流密度j0的区域里,磁矢势满足的方程为
  
  
  选用库仑规范,墷·r)=0,则得磁矢势r)满足泊松方程
  
  
  式中纯数μr 为媒质的相对磁导率, 真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程
  
  
  静磁场的泊松方程和拉普拉斯方程是矢量方程,它的三个直角分量满足的方程与静电势满足的方程有相同的形式。对比静电势的解,可得矢势方程的解。
  
  

参考书目
   郭硕鸿著:《电动力学》,人民教育出版社,北京,1979。
   J.D.杰克逊著,朱培豫译:《经典电动力学》下册,人民教育出版社,北京,1980。(J.D. Jackson,Classical Electrodynamics,John Wilye & Sons,New York,1976.)
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条