1) asymptotic normal expansions
渐近正态展开
2) asymptotic expansion
渐近展开
1.
An asymptotic expansion formula of Sikkema operators on the simplex;
单纯形上Sikkema算子的一种渐近展开公式
2.
By introducing extended variables and using the theory of differential inequality,the uniformly effective asymptotic expansion is obtained under appropriate conditions.
文中揭示了其解呈现双重层性质,即奇摄动问题的解在该区域内呈现不同“厚度”的初始层性质;在适当的假设条件下,通过引进不同量级的伸长变量,构造不同“厚度”的初始层校正项,并利用微分不等式理论,得到了解的任意次近似的一致有效的渐近展开式。
3.
The asymptotic expansion term of remainder term for error of inequality distance first kind cubic spline interpolating function is advanced using interpolation method for basic spline.
利用基样条插值方法,给出非等距三次样条(Ⅰ)型插值函数余项渐近展开式。
3) asymptotic expansions
渐近展开
1.
For the elliptic partial differential equations of variable coefficient,we obtain the product theorem of asymptotic expansions of energy integral as follows:B(w,v_h)=∑ni=1h~(2i)_e∫_ΩF_i(D~(2i-2)_x(v_(xx)φ))v_hdxdy+∑nj=1k~(2j)_e∫_ΩG_j(D~(2j-2)_y(u_(yy)φ))u_hdxdy+∑ni+j=2h~(2i)_ek~(2j)_e∫_Ω[F_(ij)(D~(2i-2)_xD~(2j)_y(u_(xx)φ))+G_(ij)(D~(2i)_xD~(2j-2)_y(u_(yy)φ))]v_hdxdy+R_(n,h).
针对变系数椭圆型方程矩形元,证明了能量积分的渐近展开具有如下的乘积定理:∫Ω∫Ωk2jh2iFi(D2i-2Gj(D2j-2B(w,uh)=∑ny(uyyφ))vhdxdy+ex(uxxφ))vhdxdy+∑nei=1j=1∫Ω∑nh2i[Fij(D2i-2eek2jxD2j-2y(uyyφ))]vhdxdy+Rn,h。
2.
An analysis of asymptotic expansions of iterated Galerkin methods for eigenvalue problems of the second kind Fredholm integral equations is presented.
讨论了第二类 Fredholm积分方程特征值问题迭代 Galerkin方法的渐近展开 ,并在此基础上分析了Richardson外推方法。
3.
In this paper,we obtained item-by-item asymptotic expansions of two kind quadratic spline interpolation.
本文给出了二次样条在两类端点条件下插值误差的逐项渐近展开结果,从而获得插值误差关于步长h的级数表示式。
4) asymptotic normality
渐近正态
1.
Random weighted approximation to statistics admitting asymptotic normality;
一类具有渐近正态的统计量的随机加权逼近
2.
Under some weak conditions, the strong consistency and asymptotic normality of the SINR are obtained.
在很弱的条件下,当用户的个数和扩频因子都趋近无穷大,而它们的比保持不变时,信干比的强相合性,渐近正态等结果被证明。
3.
It is proved that the statistics is asymptotic normality,and simulation of the statistics′s asymptotic distribution is carried out with Monte Carlo method.
证明了此统计量是渐近正态的,并利用蒙特卡罗方法对统计量的渐进分布做了统计模拟。
5) asymptotically normal
渐近正态
1.
Under the normal distribution, the maximum likelihood estimator for the population parameter is proved to be unbiased and asymptotically normal.
在正态分布假 设下,总体参数的极大似然估计是渐近正态无偏估计。
6) asymptotic normal
渐近正态
1.
We prove the asymptotic normality of G M estimation of AR parameters of ARMA sequence.
证明了ARMA序列AR参数GM估计的渐近正态性。
2.
This paper presents full-information maximum weighted likelihood estimation of nonlinear simultaneous equations models and studies its asymtotic properties such as consistency and asymptotic normality.
提出非线性联立方程模型的充分信息最大加权似然估计并得到其一致性和渐近正态性的大样本性质 。
3.
This paper presents maximum weighted likelihood estimation of parametric regression models and proves its asymptotic properties such as consistency and asymptotic normality by using laws of large numbers and central limit theory.
提出参数回归模型的最大加权似然估计方法并利用概率论中的大数定律和中心极限定理证明了估计的一致性和渐近正态性 。
补充资料:渐近展开
渐近展开
asymptotic expansion
渐近展开【as州p咖ce习娜nsi.;~价..幻以犯脚冬~e皿e1,函数f(x)的 一个级数: 艺么(x) 月二0对于任何整数N)0,都有 刀 f(x)=艺么(x)+o(卿(x))(x*x。),(l) ”=0其中{叭(x)}是某一给定的(当x~x。时的)渐近序列(asymPtotic seq~ce).在这种情况下,还可表示为 f(x)~叉华。(x),f叭(x)},(x*x。).(” n二0如果由上下文显然可知{叭(x)}指的是什么序列,则在式(2)中可以省去这个序列. 渐近展开(2)称为E咖lyi意义下的渐近展开(as ym-ptotie ex稗nsion in the sense of Erd‘l功)([3]).形女口 f(x)一艺an叭(x)(x*x。)(3) 月二0的展开(其中a。都是常数),称为几inca记拿冬丁的渐近展开(asyn叩幻tic exPansion in the sense of Poi仆ca始).当给定渐近函数序列{叭(x》时,则与渐近展开(2)不同,渐近展开(3)可由函数f(x)本身唯一确定.如果对于有限个值N=O,…,N0<的,式(l)都成立,则这个展开称为精确到。伸屿(x》的渐近展开·级数 艺么(x),艺a。气(x) 月=on二0称为渐近级数(asymPtotic series).这样的级数通常是发散的,其中最常应用的是渐近幕级数(asymPtoticpo从吧r series);对应的渐近展开是Poinca比意义下的渐近展开. 下面是Erd‘lyi意义下的渐近展开的一个例子:_厂了一’{{二,二{石““’一V认{“05汗万一刘户仁一‘”“2一‘一‘ 」二。二}石、.} 一sln‘万一蕊一}户{’“2·’一‘一‘{(*,+£)、其‘,j是Besse!函数,l6J r(歹、n十l一厂2) ‘月’l气F一刀,I,‘, 函数的渐近昵环和渐近级数的概念,是H.Poln-以re(!ID在研究大体力学问题时引人的.渐近展汗的些特例旱在18担一纪时就已被发现和使用(「2j).渐近展汗在许多数学、力学和物理学问题中起着重要作用这是因为许多问题不能精确求解,但是它们的解可以作为渐近近似而得到此外,在渐近展开比较容易求得时,往往可以不必采川数值方法.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条