1) top enhanced operator
顶端增强算子
1.
Genetic algorithm with top enhanced operator;
带有顶端增强算子的遗传算法
2) strongly incveasing operator
强增算子
4) strongly accretive operator
强增生算子
1.
Based on a set of weaker hypotheses, the convergence of the Ishikawa iteration with error is discussed for a class of nonlinear evolution equations involving Lipschitz strongly accretive operators or Lipschitz strictly pseudocontractive mappings.
研究了一类含Lipschitz强增生算子或Lipschitz严格伪压缩算子的非线性发展方程,在较弱的条件下,讨论了这类方程带误差的Ishikawa迭代法收敛性。
2.
The convergence theorems of slack iteration for solving strongly accretive operator equations are given in uniformly smooth space,and the selection of slack factor γ is discusse
在Lp空间及一致光滑空间中,给出了强增生算子的收敛性定理,讨论了松弛因子的选择。
3.
In uniformly smooth Banach space, we proved that Mann iterative sequence of a class of nonlinear strongly accretive operator satisfies inequality || Tx || ≤ C + || x || convergences strongly to the unique solution of Tx = f.
在一致光滑的Banach空间,证明了满足不等式‖Tx≤C+‖x‖的一类非线性强增生算子的Mann迭代序列强收敛于Tx=f的唯一解。
5) strongly increasing(decreasing) operator
强增(减)算子
1.
In this paper, we give the concept of multi valued strongly increasing(decreasing) operator in Banach spaces, and obtain some properties.
在由锥导出的半序Banach空间框架下,研究集值强增(减)算子的若干性质,所得结果是文[1,2]中相应结果的推
6) strongly accretive operators
强增生算子
1.
By using new approximating techniques,this paper deals with convergence problem concerning Ishikawa iteration process with errors for Lipschitzan strongly accretive operators in uniform smooth Banach spaces.
使用新的逼近技巧,研究了一致光滑的Banach空间中具有Lipschitz强增生算子的带误差项的Ishikawa迭代过程的收敛性问题。
2.
The general theorem on the Ishikawa iterative approximation with errors of fixed point for Lipschitz strongly pseudo-contractive operators and solution for Lipschitz strongly accretive operators is obtained in arbitrary real Banach spaces(permitting limn→∞α n≠0 or limn→∞β n≠0 ).
得到了任意实Banach空间中带误差的Ishikawa迭代程序逼近Lipschitz强伪压缩算子的不动点与Lipschitz强增生算子的方程解的一般性定理 (允许limn→∞αn≠ 0或limn→∞βn≠ 0 ) ,并用不同于通常的方法证明了任意实Banach空间中的Ishikawa迭代程序关于Lipschitz强伪压缩算子 (或强增生算子 )是稳定
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条