1) ANN BP model
模糊优选神经网络BP模型
2) BP neural network with fuzzy optimization
模糊优选BP神经网络
1.
Then, the formulas of difference functions and relative membership degree, model of BP neural network with fuzzy optimization, equation of rank feature values are presented, and relevant equations are analyzed.
在工程模糊集理论基础上,系统建立模糊可变集合理论、模型与方法,其中包括:差异函数的概念与定义、相对隶属度公式、模糊优选BP神经网络模型及级别特征值公式,并对相关公式进行了分析论证。
3) Fuzzy BP neural network
模糊BP神经网络
1.
New fuzzy BP neural network and its application in the network management;
新型模糊BP神经网络及其在网络性能管理中的应用
4) BP neural network model
BP神经网络模型
1.
The Study on the Forecasting Methods of Urbanization level——Taking BP Neural Network Model as an Example;
城市化水平预测方法研究——以BP神经网络模型的应用为例
2.
Through the establishment of water environment management information system of Supa River basin, an improved BP neural network model made for the comprehensive assessment on the water quality of the basin concerned is presented in accordance with the condition with better water quality and without any principal economic industries therein.
通过建立苏帕河流域水环境管理信息系统,针对苏帕河流域没有主要经济产业、水质较好的状况,侧重于介绍建立改进的BP神经网络模型对流域的水质进行综合评价。
3.
It is introduced that the BP neural network model of prediction of mining collapse is established based on the survey′s data and main factors at a mine field where the collapse had happen.
依据某煤炭开采区的勘察资料 ,综合考虑影响采空塌陷的主要因素 ,建立了预测采空塌陷的 BP神经网络模型。
5) BP neural network
BP神经网络模型
1.
Then the wavelet network model is established by the combination of BP neural network and used to forecast annual runoff at Beipei hydrologic station,and the forecasted result is compared with the forecasted result by BP neural network.
其次结合BP神经网络建立小波网络模型,并利用该模型对北碚站的年径流量进行预测,同时将预测结果与BP神经网络模型的预测结果进行了比较,比较结果表明:小波网络模型对径流变化的预测效果明显优于BP神经网络模型,为径流量的定量分析提供了一种新的方法。
2.
The principal component analysis of factors of BP neural network model and statistical regression model has been carried out by an example; and the effects of factor correlativity on the two kinds of dam monitoring models are studied.
通过实例分别对BP神经网络模型和统计回归模型进行了建模因子的主成分分析,通过对相应原始模型的比较,研究了因子相关性对两种模型的影响,结果证明因子相关性对BP神经网络模型基本无影响,对统计回归模型影响较大。
3.
BP neural network of LM calculation method was designed with Matlab language for predicting the road traffic noise.
运用 Matlab语言编程 ,构造预测交通噪声的 LM算法 BP神经网络模型 ,把预测因子 (轻、重型车流量、平均车速、受声点距路肩距离、敏感点高差 )作为样本输入到网络模型 ,噪声等效声级作为样本输出 ,反复训练网络 ,通过增加隐含层节点数、改进算法 ,以降低误差 ,缩短训练时间。
补充资料:基于模糊神经网络的模具产品报价系统
一、 报价系统概论
产品报价是指被讯价方根据自身所处市场环境、生产、经营、管理现状等因素而针对讯价方所指定的产品及其特殊的功能需求所报出的价格。产品报价是一种复杂而有重要的经济行为。产品报价的高低好坏有利于报价双方能面对面坐下来并经多次商讨而确定产品的成交价格并最终达成协议,签订合同。产品报价[1],特别是比较复杂的产品报价,如模具产品报价,需要许多领域人员的协调工作,如技术、财务、商务等,必须考虑各种结构化和非结构化的因素。其中结构化因素如技术参数、结构参数、工艺参数、制造成本、费用分配比例等比较易于确定的因素。而非结构化因素如最终利润率、赢得订单的几率等,则需要考虑企业内外环境等各种不确定因素。从信息系统角度来考虑,整个报价过程是一个信息流动和信息处理的过程,包括信息的产生、传递、处理、存储;具有很复杂的信息流,涉及到销售、经营、设计、会计、生产计划、采购等等。
[1]目前国内外开发的报价系统依其功能可大致分为五类,即商务型报价系统、生产型报价系统、工程型报价系统、投标型报价系统和集成型报价系统。工程型报价系统实际上是产品选型、初步设计加成本估算,其最终报价的形成有待提高;商务型报价系统,是在技术报价的基础上,对产品价格进行分析、计算、结合价格变化趋势预测的结果,确定合适的产品价格。其全部价值是基于产品成本而做的加价判断或推理。二者各自突现了自己的重点,如前者对报价的结构化问题处理较好,而后者对报价所涉及的非结构化因素研究较为深刻。
二、 模具产品的报价
模具产品的报价是一个非常复杂的过程。但从单纯的仅考虑结构化因素的技术报价来看。
框一、功能分解与评价:
根据客户提供的工件图纸及交货期限、或其他特殊的要求分析工件的结构特征、工艺参数等因素,提取有用信息。
框二、产品方案设计:
根据功能评价所提供的有用信息及交货期限等,考虑自身的生产、经营、管理现状,确定合理的方案。主要有工件排样、模具类型选择、压力机参数估算选型等。
框三、结构设计:
根据设计方案确定模具的合理结构和大致尺寸,同时选定模架形式等。
框四、成本估算:
根据工厂积累的有关经验数据(如外构件的价格、人工费用、材料费用、费用分配比例等)和以往开发同类产品的报价经验,由结构设计和方案设计所得的有关信息,估算产品成本。
框五、历史经验资料、数据:
为方案、结构、成本估算提供各种所需的资料、数据。包括各种工具书、国家标准、材料费用表、人工费用表、费用分配比例、以往开发经验及相关数据等非常有用的各种信息。
产品报价是指被讯价方根据自身所处市场环境、生产、经营、管理现状等因素而针对讯价方所指定的产品及其特殊的功能需求所报出的价格。产品报价是一种复杂而有重要的经济行为。产品报价的高低好坏有利于报价双方能面对面坐下来并经多次商讨而确定产品的成交价格并最终达成协议,签订合同。产品报价[1],特别是比较复杂的产品报价,如模具产品报价,需要许多领域人员的协调工作,如技术、财务、商务等,必须考虑各种结构化和非结构化的因素。其中结构化因素如技术参数、结构参数、工艺参数、制造成本、费用分配比例等比较易于确定的因素。而非结构化因素如最终利润率、赢得订单的几率等,则需要考虑企业内外环境等各种不确定因素。从信息系统角度来考虑,整个报价过程是一个信息流动和信息处理的过程,包括信息的产生、传递、处理、存储;具有很复杂的信息流,涉及到销售、经营、设计、会计、生产计划、采购等等。
[1]目前国内外开发的报价系统依其功能可大致分为五类,即商务型报价系统、生产型报价系统、工程型报价系统、投标型报价系统和集成型报价系统。工程型报价系统实际上是产品选型、初步设计加成本估算,其最终报价的形成有待提高;商务型报价系统,是在技术报价的基础上,对产品价格进行分析、计算、结合价格变化趋势预测的结果,确定合适的产品价格。其全部价值是基于产品成本而做的加价判断或推理。二者各自突现了自己的重点,如前者对报价的结构化问题处理较好,而后者对报价所涉及的非结构化因素研究较为深刻。
二、 模具产品的报价
模具产品的报价是一个非常复杂的过程。但从单纯的仅考虑结构化因素的技术报价来看。
框一、功能分解与评价:
根据客户提供的工件图纸及交货期限、或其他特殊的要求分析工件的结构特征、工艺参数等因素,提取有用信息。
框二、产品方案设计:
根据功能评价所提供的有用信息及交货期限等,考虑自身的生产、经营、管理现状,确定合理的方案。主要有工件排样、模具类型选择、压力机参数估算选型等。
框三、结构设计:
根据设计方案确定模具的合理结构和大致尺寸,同时选定模架形式等。
框四、成本估算:
根据工厂积累的有关经验数据(如外构件的价格、人工费用、材料费用、费用分配比例等)和以往开发同类产品的报价经验,由结构设计和方案设计所得的有关信息,估算产品成本。
框五、历史经验资料、数据:
为方案、结构、成本估算提供各种所需的资料、数据。包括各种工具书、国家标准、材料费用表、人工费用表、费用分配比例、以往开发经验及相关数据等非常有用的各种信息。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条