1) heavy-degraded
重度退化
1.
Comparative research on the plant communities of moderate-degraded and heavy-degraded stipa alpine grassland;
中度与重度退化针茅型高寒草地群落比较研究
2) doubly degenerate
双重退化
1.
The existence and uniqueness of renormalized solutions of a doubly degenerate parabolic equation are discussed by means of parabolic regularization method.
利用抛物正则化方法证明了双重退化抛物型方程重整化解的存在惟一性。
3) degenerate rearrangement
退化重排
5) strength degradation
强度退化
1.
Firstly, according to analyze the fatigue test result of the normalized carbon steel, a logarithmic expression is developed to describe residual strength degradation process, the definition and expression of fatigue damage under symmetrical she with constant amplitude are also given, and the expression 'can explain the non-linear property of fatigue damage.
通过对正火45钢的试验数据分析,提出了一个反映剩余强度退化的对数表达式,给出对称恒幅应力循环下疲劳损伤的定义与表达式。
2.
Based on the study of strength degradation of material in the fatigue process,a strength degradation model is proposed.
在研究疲劳过程中材料强度退化规律的基础上 ,建立了一个强度退化模型 。
3.
A nonlinear and continuous strength degradation model is presented from the view point that fatigue damage process is the process during which material static strength degrades constantly.
从疲劳过程本质上是材料静强度不断退化的过程的观点出发,建立了一个非线性的、连续的强度退化模型。
6) stiffness degradation
刚度退化
1.
Research on behaviors of frame-shear wall structures based on stiffness degradation;
基于刚度退化的框-剪结构受力性能研究
2.
In this paper,a new rate-dependent concrete elasto-plastic damage model for simulating the mechanical behaviors of concrete is established by introducing the effect of strain rate,damage variable and stiffness degradation variables.
通过引入应变速率、损伤变量以及刚度退化指标等参数,建立了应变率相关的混凝土弹塑性损伤模型。
3.
The real stiffness of frame in different deformation phases was determined according to experimental data,and the stiffness degradation coefficient was adopted to revise the stiffness of each floor.
根据模型试验数据确定各变形阶段框架的实际抗侧刚度,采用框架抗推刚度退化系数对框架各楼层抗推刚度进行修正,再引入周期、剪力与侧移修正系数对弹性阶段的结构受力性能予以修正,提出一种考虑刚度退化时框架结构的计算方法,并给出具体计算步骤。
补充资料:多重度
分子式:
CAS号:
性质:亦称自旋多重度。当总自旋量子数(S)给定后,对于相同的空间电子波函数来说,其自旋角动量的可能取向数等于2S+1(即多重度)。如单线态因S=0,多重度2S+1=1;双线态因S=1/2,2S+1=2。以此类推。应注意的是,当S>L(L为总轨道角动量量子数)时,此时可能的总角动量取向数只有2L+1个。
CAS号:
性质:亦称自旋多重度。当总自旋量子数(S)给定后,对于相同的空间电子波函数来说,其自旋角动量的可能取向数等于2S+1(即多重度)。如单线态因S=0,多重度2S+1=1;双线态因S=1/2,2S+1=2。以此类推。应注意的是,当S>L(L为总轨道角动量量子数)时,此时可能的总角动量取向数只有2L+1个。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条