说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 土壤微生物碳
1)  Soil microbial biomass carbon
土壤微生物碳
1.
This study, under grads grazing stress, focused on soil microbial (bacteria, fungi and actinomycetes), soil microbial biomass carbon and soil microbial biomass nitrogen.
以祁连山北支冷龙岭东段南麓的甘柴滩夏季牧场集体长期混合(藏系绵羊、牦牛)放牧的高寒金露梅(Potentilla fruticosa)灌丛草地为对象,采用平板涂抹分离法和氯仿熏蒸法对不同放牧压力梯度下土壤微生物(细菌、真菌和放线菌)和土壤微生物碳、微生物氮量进行研究,结果表明:不同放牧压力梯度下,金露梅灌丛和丛间草地土壤微生物以细菌占绝对优势,放线菌和真菌较少,垂直分布明显;随着放牧压力梯度的增加,金露梅灌丛和丛间草地,0~25cm土层中的细菌、放线菌、真菌及微生物碳和微生物氮数量呈降低趋势,其降低程度与放牧压力梯度呈直线正相关。
2)  soil microbial biomass carbon
土壤微生物量碳
1.
Variation of soil microbial biomass carbon,soil microbial biomass nitrogen and nitrogen mineralization potential in different soil types on the Loess Plateau;
黄土高原不同土壤微生物量碳、氮与氮素矿化势的差异
2.
Effects of no-tillage on soil microbial biomass carbon;
免耕覆盖对土壤微生物量碳的影响
3.
Effects of sowing winter wheat under no-till with maize straw mulching on soil microbial biomass carbona
玉米秸秆覆盖冬小麦免耕播种对土壤微生物量碳的影响
3)  soil microbial biomass C
土壤微生物量碳
1.
Effects of different fertilization on red soil microbial biomass C in tea garden;
不同培肥措施对红壤茶园土壤微生物量碳的影响
2.
The dynamic changes of soil microbial biomass Carbon (C) and soil enzyme activities during growth of corn were studied in field experiment.
采用大田试验法研究了玉米生育期内土壤微生物量碳和酶活性动态变化特征。
4)  soil microbial biomass carbon
土壤微生物生物量碳
1.
Seasonal fluctuation of soil microbial biomass carbon in secondary oak forest and Pinus taeda plantation in north subtropical area of China;
北亚热带次生栎林与火炬松人工林土壤微生物生物量碳的季节动态
2.
Seasonal fluctuation of soil microbial biomass carbon and its influence factors in two types of tropical rainforests
两种热带雨林土壤微生物生物量碳季节动态及其影响因素
3.
Other soil parameters such as soil microbial biomass carbon,soil soluble organic carbon,and soil moisture were determined at the same time.
测定了贵州喀斯特地区土壤表层CO2 释放通量 ,同时还测定了土壤微生物生物量碳以及土壤可溶性有机质含量和土壤湿度。
5)  soil microbial biomass-C
土壤微生物生物量碳
1.
Field experiments were carried out to examine the effects of different fertilizers on growth of tomato,soil enzymes activities and soil microbial biomass-C.
在番茄生长期,生态肥与有机肥混合处理的土壤微生物生物量碳显著高于另外2个处理,表明施用生态肥有利于增加土壤肥力和促进番茄生长。
6)  Microbial biomass carbon
土壤微生物生物量碳
1.
Soil enzymatic activities (urease, hydrogen peroxidase, invertase and alkaline phosphatase), microbial biomass carbon, pH, EC and the contents of soil nutrient were determined in soils under differ.
本文针对蔬菜设施生产中的施肥问题,通过室内培养试验模拟了设施栽培条件下不同肥料种类和水分状况对土壤脲酶、过氧化氢酶、碱性磷酸酶和蔗糖酶活性的影响及短期变化规律;通过设施条件下的栽培试验,研究了不同肥料种类和肥料用量对设施土壤微生物生物量碳、土壤脲酶、过氧化氢酶、碱性磷酸酶和蔗糖酶活性、土壤pH值、电导率、养分等土壤生态因子以及番茄生长和产量的影响,明确了设施栽培条件下施肥措施对主要土壤生态因子和作物生长发育的影响规律。
2.
Results elucidated that the characteristics such as soil microbial biomass carbon(SMBC),light fraction organic carbon(LFOC),mineralizable carbon(MC),and microbial quotient(qSMBC) had a decreasing trend,while microbial metabolic quotient(qCO2) had an increasing trend,which acted in accord with the direction of rocky desertification.
分析结果表明,随着石漠化程度的增加,土壤微生物生物量碳(SMBC)、轻组有机碳(LFOC)、可矿化碳(MC)、微生物商(qSMBC)呈下降趋势,微生物呼吸商(qCO2)呈上升趋势,与石漠化过程有一致性,能较好体现石漠化过程中土壤退化的本质。
补充资料:土壤微生物学
      微生物学的 1个分支学科。它研究土壤微生物的种类、数量、分布、生命活动规律及其与土壤中的物质和能量转化、土壤肥力、植物生长等的关系(见土壤微生物区系)。因此,它又是土壤学的一个组成部分,而且与生物化学、农业化学、植物生理学和植物病理学等学科相互渗透。它的基本任务是发展土壤肥力和增强植物营养。
  
  发展简史  19世纪后期,农业化学和细菌学的形成和发展为研究土壤中物质转化的微生物学过程开辟了道路。1877年,Т.施勒辛和А.明茨证实了土壤中的硝化作用是通过微生物进行的。1891年,R.韦林顿又证实了硝化作用不仅在土壤中发生,也可以在含有铵盐的液体中用土壤接种产生。1885~1888年间,С.Н.维诺格拉茨基用他首创的无机选择性和富集培养法分离得到能使铵氧化为亚硝酸和使亚硝酸氧化为硝酸的两种细菌。同时,他还发现了硫细菌并研究了土壤中的硫化作用。他的研究不仅论证了土壤中氮和硫的还原性化合物的微生物学氧化作用,也揭示了土壤中化能无机营养型细菌。1888年,H.黑尔里格尔和H.维尔法特在灭过菌的砂土里栽种豌豆和非豆科作物的试验中,证实了豌豆只有在未灭菌的土壤中或在加有土壤浸出液的灭菌砂土中才能在根部结瘤,从而利用空气中的氮素为营养。同年,M.W.拜耶林克从根瘤中分离并获得根瘤菌的纯培养。1889年,А.普拉兹莫夫斯基用根瘤菌纯种回接豆科植物,成功地在根部形成根瘤,确认根瘤菌与豆科植物的共生固氮作用。1893年维诺格拉茨基发现厌气性的固氮梭菌,1901年,拜耶林克发现好气性的固氮菌(见固氮菌科),开辟了探讨微生物固氮作用的研究领域。1904年,В.Л.奥梅良斯基分离得到纤维分解细菌,开创了土壤有机物质分解的微生物过程的研究。这些先驱者们从不同方面奠定了土壤微生物学在20世纪迅速发展的基础。S.A.瓦克斯曼的《土壤微生物学原理》(1927)、E.B.弗雷德等人的《根瘤菌和豆科植物》(1932)以及维诺格拉茨基1891~1925年间的论文集《土壤微生物学──问题与方法》(1952),是土壤微生物学早期研究中的丰硕成果。
  
  在20世纪50年代,土壤微生物学已经得到迅速的发展。人们对土壤中诸营养元素循环的各个环节的微生物学过程(包括起作用的微生物种类和作用条件)进行了深入的研究,既阐明了土壤腐殖质形成和分解的微生物学过程,也论证了土壤微生物对增强土壤肥力的作用。瓦克斯曼对土壤微生物间拮抗关系的研究,特别是对拮抗性放线菌所产生的各种抗菌性物质的研究成果,为抗生素发酵工业的兴起作出了巨大贡献(见抗生素发酵微生物)。
  
  近20年来,微生物固氮作用的研究已是当前在理论和实践中的重大课题。15N示踪法和乙炔还原法有力地促进了对固氮微生物和固氮作用的研究与应用。1970年巴西的J.多布雷娜报道雀稗根系有专性共栖的固氮菌(雀稗固氮菌),接着又在马唐和玉米根际发现有共栖的固氮螺菌(带脂固氮螺菌),提出了界于共生固氮和自生固氮之间的联合固氮作用。另外,由于固氮酶的提取成功,使固氮酶的结构、性质以及固氮机理得到了阐明,目前正在通过人工诱变和基因转移,向培育高效固氮微生物新种的方向努力。土壤中的氮素损失一直是土壤微生物学家重视的问题。目前正在研究以抑制硝化细菌活动的方式,减少土壤中的硝化作用和反硝化作用,防止氮肥的损失和避免因形成亚硝酸而污染水域。
  
  在土壤微生物保进植物营养这一问题上,人们已经注意到作物和树木与菌根的共生关系。研究它们共生的土壤条件和机理是一项对农林生产有实践意义的工作。
  
  目前,土壤微生物学的研究又进入一个新领域,人们可以利用微生物处理污物和污水,降解土壤中残留的有机农药,消除作物的土传性病害,这对于净化环境和土壤保健是大有好处的。
  
  20世纪40年代,中国开始重视对土壤微生物学的研究。50年代,各高等农业院校开设以土壤微生物学为重点内容的农业微生物学课程。1954年中国科学院召开土壤微生物学工作座谈会以后,有关单位开展了对自生固氮菌的生态、分布和固氮作用的研究,对筛选大豆和花生根瘤菌高效菌株和接菌效果的试验,对堆肥腐熟过程中氨化细菌和纤维分解菌的作用的探索。1964年中国土壤学会和中国微生物学会联合召开土壤微生物学专业会议,对土壤微生物区系分析、植物营养元素生物循环、根瘤菌的共生固氮、固氮细菌的自生固氮和根际固氮、硝化作用和反硝化作用、纤维分解微生物和纤维分解作用、化能自养细菌等方面的研究工作展开讨论,有力的推进了中国土壤微生物学的发展,70年代以来又开展了土壤中的拮抗性微生物以及利用它们所产生的拮抗性物质防治作物的病虫害;利用微生物降解土壤的残毒;非豆科植物的共生固氮以及共生或自生蓝藻的固氮作用;沼气微生物和产生沼气的微生物学过程等方面的研究。
  
  研究内容  ①土壤微生物的形态、 分类、 生理类群、以及土壤微生物资源的开发和利用;②土壤因素对土壤微生物类群的分布、发育状况以及各类群之间的关系(互利促进或拮抗抑制);③微生物对土壤中各种物质的转化,包括有机物质的分解、营养元素的转化、土壤中新的有机质的合成以及土壤理化性质的改变;④植物根系对微生物发育和活动的影响、微生物活动对植物营养、生长的利弊(见根际微生物);⑤土壤微生物和其他生物分泌的各种外酶和这些生物死亡自溶后释放的内酶,对土壤中各种物质转化的活性以及对土壤性质的影响;⑥土壤微生物对污物、污水的净化,对有机农药残毒的降解以及土壤保健的作用;⑦土壤微生物在厌气性分解有机物质中产生沼气的过程。
  
  

参考书目
   陈华癸等:《土壤微生物学》,上海科学技术出版社,上海,1981。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条