1) model of grain boundaries recombination and losses
晶界复合损失模型
1.
In this paper, using Rothwarf s model of grain boundaries recombination and losses, calculated pho-tocurrents and conversion efficiencies on CdS/CuInSe2 polycrystalline heterojunctions solar cells.
用Rothwad的晶界复合损失模型对CdS/CuInSe_2多晶异质结太阳电池的光电流和转换效率进行计算,结果发现掺杂浓度N_A有一个最佳值(—10~(15)cm~(-3),在这个值附近,当晶粒半径R=1μm时,电池的短路电流达33。
2) unified grain boundary model
综合晶界模型
3) loss model
损失模型
1.
On the basis of summarizing the current ways of performance forecast for centrifugal compressor,put forward the way of adopting polytropic coefficient instead of adiabatic exponent in the process of calculating the compressor s energy loss models and parameters of all sections.
在总结目前离心压缩机性能预测方法的基础上,提出在计算压缩机损失模型和各截面参数时采用多变系数替换绝热指数的方法。
2.
The paper provides a suit of loss models about calculating design and off-design points.
提出了一套计算设计点及非设计点的损失模型,应用所提出模型对某型对旋式轴流通风机的性能特性进行预测计算,计算结果与样机试验测试结果对比,效果良好。
3.
Based on the experimental data of a 99 mm rotor,various losses and loss models of the stator of variable geometry radial inflow turbine(VGT) was analyzed.
基于99 mm叶轮实验,分析了变几何径向透平静叶的各种损失以及不同的损失模型。
4) grain boundary layer model
晶界模型
5) phosphorus loss model
磷损失模型
6) loss model method
损失模型法
1.
The machine robust design method was put forward by the combination of loss model method and synthetic judgment method.
将稳健设计中的损失模型法和模糊数学中的综合评判方法应用于混凝土泵车臂架系统设计中,以臂架系统质量和所占空间体积为性能指标,同时考虑强度、局部稳定性等约束条件,对臂架系统进行了稳健设计,通过实例验证了该方法的正确性。
2.
Tolerance design which harmonize relation of quality and cost is the last stage of the robust design based on loss model method.
容差设计是基于损失模型法稳健设计的最后一个阶段,其主要目的是协调质量特性波动与增加制造费用之间的关系,以获得高质量与低成本的最新产品。
补充资料:非晶态材料的结构模型
从原子间的相互作用以及其他约束条件出发,通过建造模型的方法得出某种可能的原子排列情况。非晶态材料的各种性质,是由它的微观结构(包括原子结构和电子结构)决定的。目前对非晶态材料的电子结构了解很少,讨论其结构常以原子结构为主。非晶态结构的主要特点,是长程无序、短程有序(见无序体系)。由于至今尚无任何技术可以准确测定,所以,利用结构模型是研究非晶态结构的一个重要方法。从模型可以得出各原子中心的坐标,分析原子分布的几何特征,讨论其各种物理性能。将从模型推算出的材料性质与实验观测的结果进行比较。径向分布函数F(r)表示以某个原子为中心,距离它r远处单位厚度壳层中原子数的统计平均值,即F(r)=4πr2ρ(r),
式中ρ(r)是原子的数密度。有时也用双体分布函数描述原子的分布,双体分布函数g(r)是以某一原子的坐标作原点,距离它r远处找到另一个原子的几率
式中ρo=N/V是平均数密度,N代表体积V中的总原子数。各种状态的g(r)示意图如图1所示。
现在常用的非晶态结构模型有以下几种。
微晶模型 认为非晶态材料的短程序与同成分的晶态材料相同,即非晶态是由极微小的晶粒组成的,晶粒大小约为十几埃至几十埃,各晶粒的取向的分布是散乱的。各种非晶态材料都可以采用这种模型。它可以定性地解释非晶态材料的一些性质,如非晶态材料的密度常与晶态相近,衍射图形成弥散的环。但是根据这种模型计算得到的F(r)或g(r)常与实验符合得不很好,晶粒间界处原子的分布情况也不清楚。
与微晶模型近似的还有聚集团模型。各个聚集团有几十个原子,有与晶体结构不同的短程序。聚集团不能像晶体元胞那样连续填充空间,而是靠无规排列的原子相连接。
硬球无规密集排列模型 1959年J.D.伯尔纳用等径钢球的堆积来模拟液体的结构。后来M.H.科恩等提出这样得到的模型适于描述非晶态金属的结构。建造这种模型时,把钢球装入器壁不规则或柔软的容器中,加以振动或挤压使之密集,将球粘结后再逐个剥下,测出各球心的坐标,就可以得出径向分布函数和密度等数据。这些结果与实验符合得较好。
伯尔纳认为这种模型可以看作是由五种多面体组成的,一般称之为伯尔纳多面体(图2)。分析模型中各种多面体的数量,知四面体有73%,而八面体很少,其余几种多面体有近似为五边形的面。这些分析可以部分说明一些非晶态金属结构的特征。
1972年C.H.本涅脱用电子计算机建造硬球无规密集排列模型。结果是存储在计算机内的一组球心坐标,当判据选择合适时,所得的径向分布函数与手工建造的模型很相近。利用计算机还可以模拟原子间的互作用,使硬球模型"松弛"。这样可以使模型的径向分布函数与实验符合得更好。
连续无规排列模型 这种模型用一些细棒将代表原子的球连接起来,与每个球相连的细棒数等于球所代表的原子的价键数,细棒长度表示键长,细棒间的夹角表示键角。球和细棒组成的网格应能连续地填充空间,且不应出现晶态的长程周期性。模型内部应没有或只有很少数一头没有与球相连的细棒(悬挂键),应力要小。这种模型常用来模拟靠共价键结合的非晶态半导体、氧化物玻璃等材料。所得的径向分布函数一般与实验符合较好。这种模型也可以用计算机建造,所得结果基本上与手工模型一致。
冻结气体模型 电子计算机可以按照蒙特-卡罗法或分子动力学法模拟多原子体系,考察原子的分布状况,计算出径向分布函数。在高密度下,可以认为它是对非晶态固体结构的模拟。它模拟的是原子无规运动的瞬时情况,所以称为冻结气体模型。对于快速冷却得到的非晶态金属结构,这种模拟更直观、更合理。当密度、温度等参量选择恰当时,所得的径向分布函数与实验符合得相当好。但是受计算时间等条件限制,一般只能作数十至数百个原子的模型。
通过对模型的考察和非晶态结构测定技术,人们已经对非晶态结构的主要特征和概貌有了初步的了解。但是对非晶态结构细节的描述、各类的差别等方面还有大量工作要做。
式中ρ(r)是原子的数密度。有时也用双体分布函数描述原子的分布,双体分布函数g(r)是以某一原子的坐标作原点,距离它r远处找到另一个原子的几率
式中ρo=N/V是平均数密度,N代表体积V中的总原子数。各种状态的g(r)示意图如图1所示。
现在常用的非晶态结构模型有以下几种。
微晶模型 认为非晶态材料的短程序与同成分的晶态材料相同,即非晶态是由极微小的晶粒组成的,晶粒大小约为十几埃至几十埃,各晶粒的取向的分布是散乱的。各种非晶态材料都可以采用这种模型。它可以定性地解释非晶态材料的一些性质,如非晶态材料的密度常与晶态相近,衍射图形成弥散的环。但是根据这种模型计算得到的F(r)或g(r)常与实验符合得不很好,晶粒间界处原子的分布情况也不清楚。
与微晶模型近似的还有聚集团模型。各个聚集团有几十个原子,有与晶体结构不同的短程序。聚集团不能像晶体元胞那样连续填充空间,而是靠无规排列的原子相连接。
硬球无规密集排列模型 1959年J.D.伯尔纳用等径钢球的堆积来模拟液体的结构。后来M.H.科恩等提出这样得到的模型适于描述非晶态金属的结构。建造这种模型时,把钢球装入器壁不规则或柔软的容器中,加以振动或挤压使之密集,将球粘结后再逐个剥下,测出各球心的坐标,就可以得出径向分布函数和密度等数据。这些结果与实验符合得较好。
伯尔纳认为这种模型可以看作是由五种多面体组成的,一般称之为伯尔纳多面体(图2)。分析模型中各种多面体的数量,知四面体有73%,而八面体很少,其余几种多面体有近似为五边形的面。这些分析可以部分说明一些非晶态金属结构的特征。
1972年C.H.本涅脱用电子计算机建造硬球无规密集排列模型。结果是存储在计算机内的一组球心坐标,当判据选择合适时,所得的径向分布函数与手工建造的模型很相近。利用计算机还可以模拟原子间的互作用,使硬球模型"松弛"。这样可以使模型的径向分布函数与实验符合得更好。
连续无规排列模型 这种模型用一些细棒将代表原子的球连接起来,与每个球相连的细棒数等于球所代表的原子的价键数,细棒长度表示键长,细棒间的夹角表示键角。球和细棒组成的网格应能连续地填充空间,且不应出现晶态的长程周期性。模型内部应没有或只有很少数一头没有与球相连的细棒(悬挂键),应力要小。这种模型常用来模拟靠共价键结合的非晶态半导体、氧化物玻璃等材料。所得的径向分布函数一般与实验符合较好。这种模型也可以用计算机建造,所得结果基本上与手工模型一致。
冻结气体模型 电子计算机可以按照蒙特-卡罗法或分子动力学法模拟多原子体系,考察原子的分布状况,计算出径向分布函数。在高密度下,可以认为它是对非晶态固体结构的模拟。它模拟的是原子无规运动的瞬时情况,所以称为冻结气体模型。对于快速冷却得到的非晶态金属结构,这种模拟更直观、更合理。当密度、温度等参量选择恰当时,所得的径向分布函数与实验符合得相当好。但是受计算时间等条件限制,一般只能作数十至数百个原子的模型。
通过对模型的考察和非晶态结构测定技术,人们已经对非晶态结构的主要特征和概貌有了初步的了解。但是对非晶态结构细节的描述、各类的差别等方面还有大量工作要做。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条