1) microbial community structure
微生物种群结构
1.
Analysis of microbial community structure with DGGE sludge compost technology.;
DGGE污泥堆肥工艺微生物种群结构分析
2.
The accumulation of acetate and variation of microbial community structure during anaerobic fermentation of sludge were studied by using a special inhibitor-2-bromoethanesulfonate (BrCH2CH2SO-3, BES) to inhibit methanogens.
研究了污泥厌氧发酵过程中产甲烷菌被特异性抑制剂——2-溴乙烷磺酸盐(BrCH2CH2SO3-,BES)抑制时乙酸的累积,并采用一种新的微生物分子生态学手段——末端限制性片段长度多态性分析(T-RFLP)研究乙酸累积状态下的微生物种群结构。
3.
The influence of Fe~(2+) and Ni~(2+) metal ions on microbial community structure in(2-chlorophenol)(2-CP)-acclimated anaerobic granular sludge was investigated with modern molecular biological techniques.
采用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术,研究Fe2+,Ni2+金属离子对经2-氯酚(2-CP)驯化后的厌氧生物反应器颗粒污泥的微生物种群结构的影响。
2) Microfauna communities
微型生物种群结构
3) population structure of soil microorganism
土壤微生物种群结构
5) bacterial community structure
微生物群落结构
1.
To enhance the efficiency of A/O process for petrochemical wastewater treatment,the relationship between bacterial community structure and the pollutants loading/degrading rates are analyzed by the polymerase chain reaction and denaturing gradient gel electrophoresis(PCR-DGGE) technique.
为提高石油化工污水厂厌氧—好氧(A/O)工艺净化效能,应用聚合酶链式反应—变性梯度凝胶电泳(PCR-DGGE)与常规技术相结合的方法分析了石化废水处理系统生化池中微生物群落结构变化与污染负荷和主要污染物降解效果变化的关系。
6) microbial community structure
微生物群落结构
1.
Research progresses on analytical technologies used in microbial community structure and diversity;
微生物群落结构和多样性解析技术研究进展
2.
Remediation of chromium-contaminated sediments by zero-valent iron and its effects on microbial community structure
零价铁对铬污染底泥的修复及其对微生物群落结构的影响
3.
In order to examine the influence of lead (Pb) contamination on microbial biomass, two ecophysiological parameters and microbial community structure in soil during the growth of Chinese Cabbage (Brassica chinensis), a 60 days-growth experiment of the plant was conducted in two different soils, namely, marine sediment silty loam (S1) and yellowish red soil (S2).
对21种磷脂脂肪酸(PLFA)的图谱进行分析,结果表明,受铅污染土壤的微生物群落结构组成伴随着功能参数的变化而发生了改变;随着铅污染程度的增强,指示真菌和放线菌类的脂肪酸增加,而革兰氏阳性菌与革兰氏阴性菌脂肪酸比值下降。
补充资料:氨基酸发酵微生物
发酵生产氨基酸的微生物。1950年发现了大肠肝菌能分泌少量的丙氨酸、谷氨酸、天冬氨酸和苯丙氨酸,以及加入过量的铵盐可增加氨基酸积累量的现象。1957年,日本的木下祝郎等采用谷氨酸棒状杆菌进行L-谷氨酸发酵取得成功。不久,利用该菌的突变株又发酵生产了L-赖氨酸、L-鸟氨酸和L-缬氨酸等。中国于 1958年开始研究L-谷氨酸,随后分别报道了酮戊二酸短杆菌2990-6的L-谷氨酸发酵及其代谢的研究结果。1965年把北京棒状杆菌ASI299和钝齿棒状杆菌ASI542先后应用于L-谷氨酸发酵的工业生产,接着在选育其他氨基酸的优良菌株方面也取得一定成果,逐渐形成了中国的氨基酸发酵工业。
近20种氨基酸均可用微生物发酵法生产。但是,微生物的细胞具有代谢自动调节系统,使氨基酸不能过量积累。如果要在培养基中大量积累氨基酸,就必须解除或突破微生物的代谢调节机制。氨基酸发酵就是人为控制这种机制所取得的重大成果。从自然界中分离筛选野生菌株,控制其胞膜通透性,使之有利于分泌大量L-谷氨酸,这也是获得L-谷氨酸发酵微生物优良菌株的重要途径。其次通过对产L-谷氨酸菌株的人工诱变,选育产氨基酸的各种突变株,是获得其他氨基酸发酵微生物优良菌株的有效方法。
L-谷氨酸发酵微生物的优良菌株多在棒状杆菌属、微杆菌属、节杆菌属和短杆菌属中。具有下述共同特性:①细胞形态为短杆至棒状;②无鞭毛,不运动;③不形成芽孢;④革兰氏阳性;⑤要求生物素(利用石蜡为碳源的要求硫胺素);⑥在通气培养条件下产生大量L-谷氨酸。此外,其他细菌、放线菌和真菌中的一些属种也有产L-谷氨酸的菌株,但产酸率较低。
产其他氨基酸的微生物,主要是对上述产L-谷氨酸的优良菌株进行人工诱变后选育出的各种突变株:①营养缺陷型突变株。利用营养缺陷型突变株发酵生产氨基酸的关键是限制某种反馈抑制物或阻遏物的量,以解除代谢调节机制而有利于代谢中间体或最终产物的过量积累。因此,不同氨基酸缺陷型生长在含有限量的所要求氨基酸的培养基中,往往能产生和积累大量某种氨基酸。例如,L-赖氨酸的生产菌株多采用高丝氨酸缺陷型突变株,而精氨酸缺陷型突变株往往产生鸟氨酸或瓜氨酸等;②调节突变株。采用调节突变株发酵生产氨基酸是成功的工艺之一,因为这类突变株一旦对氨基酸结构类似物具备了抗性之后,其正常代谢调节机制即被解除,因而能够积累大量的相应的氨基酸;③营养缺陷型与抗反馈调节多重突变株。采用这类多重突变株对提高某些氨基酸的发酵产率有明显的效果。例如,生产L-精氨酸、L-色氨酸、L-苯丙氨酸、L-酪氨酸、L-白氨酸和L-苏氨酸等就常采用多重突变株。
此外,还可利用添加前体物和酶转化法生产氨基酸。特别是遗传工程技术的应用,在获得或改造氨基酸发酵微生物高产菌株方面,出现了可喜的进展。
近20种氨基酸均可用微生物发酵法生产。但是,微生物的细胞具有代谢自动调节系统,使氨基酸不能过量积累。如果要在培养基中大量积累氨基酸,就必须解除或突破微生物的代谢调节机制。氨基酸发酵就是人为控制这种机制所取得的重大成果。从自然界中分离筛选野生菌株,控制其胞膜通透性,使之有利于分泌大量L-谷氨酸,这也是获得L-谷氨酸发酵微生物优良菌株的重要途径。其次通过对产L-谷氨酸菌株的人工诱变,选育产氨基酸的各种突变株,是获得其他氨基酸发酵微生物优良菌株的有效方法。
L-谷氨酸发酵微生物的优良菌株多在棒状杆菌属、微杆菌属、节杆菌属和短杆菌属中。具有下述共同特性:①细胞形态为短杆至棒状;②无鞭毛,不运动;③不形成芽孢;④革兰氏阳性;⑤要求生物素(利用石蜡为碳源的要求硫胺素);⑥在通气培养条件下产生大量L-谷氨酸。此外,其他细菌、放线菌和真菌中的一些属种也有产L-谷氨酸的菌株,但产酸率较低。
产其他氨基酸的微生物,主要是对上述产L-谷氨酸的优良菌株进行人工诱变后选育出的各种突变株:①营养缺陷型突变株。利用营养缺陷型突变株发酵生产氨基酸的关键是限制某种反馈抑制物或阻遏物的量,以解除代谢调节机制而有利于代谢中间体或最终产物的过量积累。因此,不同氨基酸缺陷型生长在含有限量的所要求氨基酸的培养基中,往往能产生和积累大量某种氨基酸。例如,L-赖氨酸的生产菌株多采用高丝氨酸缺陷型突变株,而精氨酸缺陷型突变株往往产生鸟氨酸或瓜氨酸等;②调节突变株。采用调节突变株发酵生产氨基酸是成功的工艺之一,因为这类突变株一旦对氨基酸结构类似物具备了抗性之后,其正常代谢调节机制即被解除,因而能够积累大量的相应的氨基酸;③营养缺陷型与抗反馈调节多重突变株。采用这类多重突变株对提高某些氨基酸的发酵产率有明显的效果。例如,生产L-精氨酸、L-色氨酸、L-苯丙氨酸、L-酪氨酸、L-白氨酸和L-苏氨酸等就常采用多重突变株。
此外,还可利用添加前体物和酶转化法生产氨基酸。特别是遗传工程技术的应用,在获得或改造氨基酸发酵微生物高产菌株方面,出现了可喜的进展。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条