1) intuitionistic fuzzy propositional logic
直觉模糊命题逻辑
1.
The definition of α-truth degree of intuitionistic fuzzy propositional logic formula is proposed in this paper and consequently its properties are systematically studied.
定义了直觉模糊命题逻辑公式的概率α-真度,讨论了公式的σ-真度与σ-相似度之间的关系,并证明了基于σ-真度的公式的推理规则,最终获得与王国俊教授关于一维真值逻辑公式的积分真度理论类似的结果。
2.
In this paper, an Intuitionistic Fuzzy Propositional Logic System is built by defining a implication, and the classification of generalized quasi-tautology in this system is discussed.
通过定义一个蕴涵算子,建立一个直觉模糊命题逻辑系统(I_0~2,(?),∨,→_T),讨论了系统I_0~2上的广义拟重言式的分类,将王国俊教授的广义重言式理论从一维推广到二维的直觉模糊命题逻辑上。
2) propositional fuzzy logic
命题模糊逻辑
1.
Short consistency degrees of finite theories in propositional fuzzy logic system
命题模糊逻辑系统中有限理论的弱相容度
2.
In schematic extension systems Luk,Gd,∏ and L* and propositional fuzzy logic systems MTLS,a new method to estimate theories whether or not infer B based on standard MTL-algebra L= is given.
在命题模糊逻辑系统MTL的扩张系统Luk,G d,∏和L*中,探讨出了一种基于标准MTL-代数L=[0,1]判定理论Γ是否推出公式Β的新思路。
3) fuzzy propositional logic
模糊命题逻辑
1.
Algebraic structure of the disturbing fuzzy propositional logic and the properties of its generalized tautology;
扰动模糊命题逻辑的代数结构及其广义重言式性质
2.
Disturbing Fuzzy Propositional Logic and Its Generalized Tautology;
扰动模糊命题逻辑及其广义重言式
3.
Content: In this paper, the truth degree of fuzzy propositional logicformulas was measured by probability measure and consequently theirproperties were systematically studied.
本文利用概率测度来度量模糊命题逻辑公式的真度,定义了公式的α-真度,并研究了其相关性质。
5) intuitionistic fuzzy logic
直觉模糊逻辑
1.
The paper gives a definition of intuitionistic fuzzy logic “negation” operators and also discusses some of its properties.
给出了直觉模糊逻辑非算子的定义,讨论了非算子的一些性质。
2.
In this paper, the “and” operators and the “or” operators of intuitionistic fuzzy logic are studied herein.
研究了直觉模糊逻辑“与”、“或”算子,给出了两种新型直觉模糊逻辑算子,并研究了直觉模糊逻辑“与”、“或”算子的t- 范及t- 余范的性
3.
The definitions of implication perators in intuitionistic fuzzy logic are proposed and consequently their properties are systematicly studied.
给出了直觉模糊逻辑“蕴涵”算子的定义,并对它的性质做了较为系统的研
6) intuitionstic fuzzy logic
直觉模糊逻辑
1.
Extended operators of the "and" operators and "or" operators of intuitionstic fuzzy logic are studied.
本文研究了直觉模糊逻辑“与”、“或”算子的推广算子 ,给出了直觉模糊逻辑 g-范及 (λ,φ) -并的定义 ,并讨论了直觉模糊逻辑 g-范及 (λ,φ) -并的性质及表现定
2.
On the basis of systematic studying to the intuitionstic fuzzy logic “negation”, “and”, “or” and “implication” operators by the literatures \, the homomorphism relations between a group of the logic operators (\%D,T,⊥, θ,h\%) and fuzzy logic operators (\,\%T,⊥,θ,h\%) are discussed from the viewpoint of algebra.
在文献 [1 ,2 ]对直觉模糊逻辑“非”、“与”、“或”及“蕴涵”算子进行了系统的研究基础上 ,本文将从代数观点来研究逻辑算子组 (D,T,⊥ ,θ,h)与模糊逻辑算子组 ([0 ,1 ],T,⊥ ,θ,h)之间的同态关系。
3.
On the basis of the above ,the isomorphism between intuitionstic fuzzy logic operator group and classic fuzzy logic.
文[2]、[3],[4]分别给出了直觉模糊逻辑“非”、“与”、“或”及“蕴涵”算子的定义,并讨论了它们的性质。
补充资料:直觉主义命题演算
直觉主义命题演算
intuitionistic proposidonal calculus
直觉主义命题演算【枷面位扣妇比p柳俪柱翻目。日回谓;HHI了加”HOHHc代Koe Hc,“c月eHlfe服cKa3u.aHH益』 一个描述从直觉主义(int山tion巧〔n)观点来看有效的命题推演法则的逻辑演算(10乡cai calc山aS).一个被广泛接受的直觉主义命题演算的陈述是由A .Heyting在1930年给出的.它和经典命题演算的基本不同之处在于用较弱的矛盾原理(con匕记iction prmc币le) A。(二A OB)取代排中律(hw of the excl团司m记die)(或双否定律(Iaw of double ne即tion)). 直觉主义命题演算的一个一般变异形式可陈述如下.设A,B,C是所考虑的语言中的任意公式.演算的公理是下列公式: 1 .A。(B OA); 2.(A OB)。((A。(B OC))。(A“C));3 .A。(B“A八B); 4 .A八B习A; 5 .A八B OB; 6 .A 0 A VB; 7 .B二A VB; 8.(A OC)。((B OC)。(AVBOC)); 9.(A OB)。((A。,B)。二A); 10 .A。(二A)〕B). 直觉主义命题演算的仅有的推理法则是假言推理法则(浏e of medus po~):若A和A。万可被推演出,则B可被推演出. 由直觉主义观点来看,这个演算的每个可被推演出公式都是有效的;上述演算的完全性问题是更精细的.直觉主义命题演算关于代数语义,心pke模型和玫山模型是完全的,但是关于K】eene的递归可实现性(rec此ive real凶bility)解释是不完全的;亦见构造命题演算(constructive propositjonal calculas). 关于参考文献,见直觉主义(izltuilio油m). A.G.D扮助lin撰杨东屏译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条