1) spin injection efficiency
自旋注入效率
1.
Electric detection of spin injection efficiency;
自旋注入效率的电学探测
2.
Numerical calculations indicate that increasing bias voltage will enhance the spin injection efficiency(SIE) in single magnetic junction but decrease the tunneling magnetoresistance(TM.
利用量子隧穿理论研究了磁性半导体隧道结中自旋输运的偏压影响,分别讨论了自旋注入源是铁磁金属和铁磁半导体两种情况下,磁性半导体隧道单结中自旋注入效率对偏压的依赖关系。
3.
A spin drift-diffusion equation is discussed, and the spin injection efficiency in Fe/GaAs structure, which is a representative of ferromagnet/semiconductor (FM/SC) structure, is analyzed.
如果选取参数适当,可以在Fe/GaAs结中获得较大的自旋注入效率。
2) spin injection
自旋注入
1.
Diffusion theory of spin injection into organic polymers;
自旋注入有机物的扩散理论
2.
Effect of spin injection on electrical conductivity of polarons in an organic semiconductor system
自旋注入对有机半导体极化子电导的影响
3) injection efficiency
注入效率
1.
Results from analytical derivation and numerical simulation demonstrate that,the injection efficiency under new system is very high which is nearly 100%,and perturbation on stored beam is small,whose centre-mass growth is lower than orbit stability requirement.
解析分析和数值模拟结果表明,新设计注入系统具有非常高的注入效率,配合合肥自由电子激光实验装置中直线加速器改造,注入效率接近100%;同时,储存束流扰动很小,质心发射度增长满足束流稳定性要求,系统具有向准恒流运行模式发展的潜力。
2.
The results reveal several relations between the current injection efficiency and a few parameters,i.
通过在量子阱激光器中的分别限制结构层引入4种不同的渐变方式,即线性渐变、抛物线渐变、扩散渐变以及高斯渐变,利用电流连续方程、泊松方程以及边界条件进行数值计算,得到了在不同渐变方式下器件的电流注入效率与注入载流子密度、有源层厚度及渐变长度的关系。
3.
Based on a short anode GTO structure(SA-GTO),a novel GTO structure called an injection efficiency controlled gate turn off thyristor(IEC-GTO)is proposed,in which the injection efficiency can be controlled via an additional thin oxide layer located in the short anode contact region.
在阳极短路型门极可关断晶闸管(SA-GTO)的基础上,提出了一种新颖的注入效率可控的门极可关断晶闸管(IEC-GTO),其注入效率可通过一层位于阳极短路接触区的薄氧化层来控制。
4) Spin inject
电子自旋注入
5) Hole injection efficiency
空穴注入效率
6) Carrier Injection Efficiency
载流子注入效率
补充资料:自旋-自旋弛豫
自旋-自旋弛豫
磁共振成像术语。又称T2弛豫或横向弛豫(transverse relaxation),指垂直于外磁场B0方向的磁化矢量的指数性衰减过程。磁共振成像时,对置于外磁场B0中的自旋系统施加90°射频脉冲,则自旋系统被激励,其净磁化矢量指向与外磁场B0垂直;射频脉冲终止后,被激励的质子与邻近的原子核之间发生相互作用,逐渐失去相位,净磁化矢量指向恢复与外磁场平行,该过程称自旋-自旋弛豫。自旋-自旋弛豫过程无能量交换。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条