说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 状态分解
1)  state decomposition
状态分解
1.
A state decomposition analytical method is proposed for analysis of additional displacements,additional internal forces and energy release rate produced by debonding between face plate and core material of a honeycomb sandwich beam.
采用状态分解-解析方法分析了蜂窝荚芯梁由于面板与芯材脱胶而引起的附加位移、附加内力与能量释放率,并讨论了未脱胶段的附加变形对脱胶段附加位移及能量释放率的影响,为简化力学模型提供了理论依据。
2)  states decomposition
状态集分解
1.
A novel hybrid algorithm based on states decomposition with hierarchical search is proposed to address the simultaneously lot-sizing scheduling problem arising in industry which has been proven to be strongly NP-hard.
针对集成生产计划、调度中的一类强NP-hard问题,提出了基于状态集分解的分层混合优化算法。
3)  state machine decomposition
状态机分解
1.
Taking advantages of the ideology of state machine decomposition, the SDRAM controller is implemented by several subordinate FSMs.
该文从结构优化入手来优化方法,利用状态机分解的思想将大型SDRAM控制状态机用若干小的子状态机实现,达到简化逻辑的目的,不仅提高了速度还节省了资源,对该类大型SDRAM控制器的实现有一定参考意义。
4)  task state decomposition
任务状态分解
5)  Morphological Shape Decomposition
形态学形状分解
6)  state decoupling
状态解耦
1.
A new design approach based on the minimal order nonlinear observer is presented to detect and locate leaks in complicated pipelines, since the measurements of pressure and flow are realizable only at the two extremes of the ducts, the state decoupling technology is utilized in generating the residual values and an appropriate method of linear coordinate transformation is selected.
提出基于最小阶非线性观测器的设计方法,通过对管路两端点处的压力流量在线采集处理,运用状态解耦技术,选择适当的状态线性变换方式,有效地分离出反映管路中间节点状态的残差数值,进而对非线性状态方程序列生成相应的系统残差集,以达到对管内泄漏的有效定位。
补充资料:应力状态和应变状态
      构件在受力时将同时产生应力与应变。构件内的应力不仅与点的位置有关,而且与截面的方位有关,应力状态理论是研究指定点处的方位不同截面上的应力之间的关系。应变状态理论则研究指定点处的不同方向的应变之间的关系。应力状态理论是强度计算的基础,而应变状态理论是实验分析的基础。
  
  应力状态  如果已经确定了一点的三个相互垂直面上的应力,则该点处的应力状态即完全确定。因此在表达一点处的应力状态时,为方便起见,常将"点"视为边长为无穷小的正六面体,即所谓单元体,并且认为其各面上的应力均匀分布,平行面上的应力相等。单元体在最复杂的应力状态下的一般表达式如图1,诸面上共有9个应力分量。可以证明,无论一点处的应力状态如何复杂,最终都可用剪应力为零的三对相互垂直面上的正应力,即主应力表示。当三个正应力均不为零时,称该点处于三向应力状态。若只有两对面上的主应力不等于零,则称为二向应力状态或平面应力状态。若只有一对面上的主应力不为零,则称为单向应力状态。
  
  
  应力圆  是分析应力状态的图解法。在已知一点处相互垂直的待定截面上应力的情况下,通过应力圆可求得该点处其他截面上的应力。应力圆也称莫尔圆。图2b即为图2a所示平面应力状态下表示垂直于xx平面的面上之应力与x、x截面上已知应力间关系的应力圆。利用它可求得:①任意 α面上的应力;②"最大"和"最小"正应力;③"最大"和"最小"剪应力。由应力圆上代表"最大"和"最小"正应力的A、B点可知,这些正应力所在截面上的剪应力为零,因而"最大"和"最小"正应力也就是该点处的主应力。
  
  
  应变圆  也称应变莫尔圆,是分析应变状态的图解法,其原理与应力圆类似,但应变圆的纵坐标为负剪应变的一半,横坐标为线应变 ε。在已知一点处的线应变εx、εy与剪应变γxy时,即可作出应变圆,从而求得该点处主应变 ε1与ε2的大小及其方向。在实验分析的测试中常用各种形状的应变花测量(见材料力学实验)一点处三个方向的应变,例如用"直角"应变花可测得一点处的线应变ε、ε45°、ε90°。根据一点处三个方向的线应变也可利用应变圆求得该点处的主应变ε1与ε2
  
  广义胡克定律  当按材料在线弹性范围内工作时,一点处的应力状态与应变状态之间的关系由广义胡克定律表达。对于各向同性材料,弹性模量E、剪切弹性模量G、泊松比v均与方向无关,且线应变只与正应力σ有关,剪应变只与剪应力τ有关。三向应力状态下,各向同性材料的广义胡克定律为
  
  
  
  
  
  
  
  
  
  
  
  
   τxy=Gγxy
  
  
  
   τyz=Gγyz
  
  
  
   τzx=Gγzx平面应力状态(σz=0, τyz=0, γzx=0)下的广义胡克定律应用最为普遍
  
  
  
   单向应力状态下的胡克定律则为σ=Eε。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条