1)  SAPSO
SAPSO
2)  SAPSO-BP mixed algorithm
SAPSO-BP混合算法
1.
In order to raise the accuracy of power system short-period load pre-estimation, it was raised to combine SAPSO algorithm with BP algorithm to confi gurate SAPSO-BP mixed algorithm to train artifi cial neural network to carry out pre-estimation for short-peri-od power load.
为了提高电力系统短期负荷预测的精度,提出将基于模拟退火思想的改进粒子群优化(SAPSO)算法和误差反向传播(BP)算法相结合构成SAPSO-BP混合算法用于训练人工神经网络,对短期电力负荷进行预测。
3)  particle swarm optimization with simulated annealing strategy(SAPSO)
基于模拟退火思想的粒子群优化算法
补充资料:BP算法
分子式:
CAS号:

性质:又称逆推学习算法,简称BP算法,是1986年鲁梅哈特(D. E. Rumelhart)和麦克莱朗德(J. L. McClelland)提出来的。用样本数据训练人工神经网络(一种模仿人脑的信息处理系统),它自动地将实际输出值和期望值进行比较,得到误差信号,再根据误差信号从后(输出层)向前(输入层)逐层反传,调节各神经层神经元之间的连接权重,直至误差减至满足要求为止。反向传播算法的主要特征是中间层能对输出层反传过来的误差进行学习。这种算法不能保证训练期间实现全局误差最小,但可以实现局部误差最小。BP算法在图像处理、语音处理、优化等领域得到应用。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。