1) Tensor analysis/Lorentz transformations
张量分析/罗伦兹变换
2) Lorentz Transformation Equtor
罗伦兹变换式
3) Lorentz-tensors
洛伦兹张量
4) Lorentz transformation
洛伦兹变换
1.
According to Lorentz transformation,the relativistic covariant of electromagnetic field tensor and 4-dimension forces,and the relativistic invariance of electric charge,it can be directly proved that a moving magnetic monopole will be acted- by a magnetic Lorentz force,and that the magnetic Lorentz force has the same accuracy as the Coulomb low.
概述了磁单极概念的历史发展,从洛伦兹变换出发,利用电磁场张量和四维力的协变性以及电荷相对论不变,直接证明了运动磁单极受磁洛伦兹力,建议了一个磁洛伦兹力的验证方案,并用磁洛伦兹力公式导出狄拉克电荷量子化条件。
2.
Does the theory of special relativity have its experimental foundation? Can it be proved by experiments? Does the relativity about the expansion of time and space contraction exist? Is the Lorentz transformation relative or absolute? These questions are discussed and analysed in this article.
就狭义相对论有无实验基础,能否用实验来证实狭义相对论,时间膨胀、空间收缩的相对性是否存在,洛伦兹变换是相对的还是绝对的等一系列问题进行了分析和讨论,并得出了这样的结论:目前在文献中所能查到的实验没有一个符合爱因斯坦所提出的要求,这些实验只能证实时间膨胀是存在的并且具有绝对性,但不能证实相对论的正确性。
5) Lorentz transform
洛伦兹变换
1.
The Assumption of Using Lorentz Transform to Establish the Two Signs Space and Time Coordinate;
利用洛伦兹变换创建双标度时空坐标的设想
2.
The Lorentz transformation equations directly form the postulates of special relativity.
基于传统文献利用线性变换和间隔不变性导出相对论时空坐标变换关系 ,但对变换式y′ =y ,z′ =z均未加证明 ,提出了另一种洛伦兹变换式的推导方法 ,从两个不同惯性系Σ和Σ′同时观测同一事件P ,利用光速不变原理 ,导出了在不同惯性系中的特殊洛伦兹变换式和一般情况下的洛伦兹变换式 ,并说明了一般情况下的洛伦兹变换式转换为特殊洛伦兹变换式的条
6) Lorenz transformation
洛伦兹变换
1.
According to Lorenz transformation on four-dimension wave vector,the action of light reflection on the movement mirror is analyzed in details.
利用四维波矢量的洛伦兹变换,对光在运动镜面上的反射行为作了详细的分析,推导出此情形下入射角与反射角、入射光频率与反射光频率之间的关系。
补充资料:张量分析
微分几何中研究张量场的微分运算的一个分支。它提供了微分几何研究中的一种重要工具。黎曼几何就是在张量分析的基础上发展起来的。
在了解了张量的定义及其代数运算后,人们自然地要对张量场的微分进行研究。然而,将 (r,s)型张量场在局部坐标系下的分量求导后一般并不能得到一个(r,s+1)型张量场。为了能得到一个(r,s+1)型张量场,就必须在普通导数的基础上加上一定的补偿项。设 (r,s)型张量场K的分量为,令式中Г称为联络系数,它在坐标变换xi=xi(塣)下的变换规则是。于是满足(r,s+1)型张量的变换规则也把记为,因此墷l是一个算子,它把(r,s)型张量场K变成一个(r,s+1)型张量场墷K,称墷K为张量场K的协变微分,称墷lK为K关于变量xl的协变导数。例如,对反变向量(即一阶反变张量)场,,对协变向量场(即一阶协变张量场),,对一阶反变、一阶协变张量场,
一般地说,算子墷k与墷l不可交换,墷k墷l与墷l墷k的差与联络的曲率、挠率有关。由此可导出一系列有用的恒等式,如里奇恒等式等,这些恒等式及各种协变导数之间的相互关系就形成了张量分析的主要内容。例如当??,ξ,α分别为数量场、反变向量场及协变向量场时,它们满足下列关系:
式中分别是联络Г的挠率张量和曲率张量。特别,当挠率为零时,有称这些公式为里奇恒等式。
在黎曼流形中联络Г常取为列维-齐维塔联络,这时,Г就是第二类克里斯托费尔记号。
,式中gij是黎曼度量张量的分量。当欧氏空间中采用笛卡儿直角坐标系时,{}=0,这时协变微分就化成为普通微分。
微分几何中一些重要的微分算子在局部坐标系下可用协变导数表达出来。如向量场的散度为
,式中g=det(gij)。如α为p形式,则α 的外微分dα及伴随外微分δα分别为
式中"∧"表示缺掉相应的指标。因而拉普拉斯算子Δ=dδ+δd的表示式为式中。当p=0时,即对数量场??,有
作用在数量场??上的算子称为第二类贝尔特拉米微分算子。有Δ2??=-Δ??。作用在数量场??上的第一类贝尔特拉米微分算子Δ1为
。
在了解了张量的定义及其代数运算后,人们自然地要对张量场的微分进行研究。然而,将 (r,s)型张量场在局部坐标系下的分量求导后一般并不能得到一个(r,s+1)型张量场。为了能得到一个(r,s+1)型张量场,就必须在普通导数的基础上加上一定的补偿项。设 (r,s)型张量场K的分量为,令式中Г称为联络系数,它在坐标变换xi=xi(塣)下的变换规则是。于是满足(r,s+1)型张量的变换规则也把记为,因此墷l是一个算子,它把(r,s)型张量场K变成一个(r,s+1)型张量场墷K,称墷K为张量场K的协变微分,称墷lK为K关于变量xl的协变导数。例如,对反变向量(即一阶反变张量)场,,对协变向量场(即一阶协变张量场),,对一阶反变、一阶协变张量场,
一般地说,算子墷k与墷l不可交换,墷k墷l与墷l墷k的差与联络的曲率、挠率有关。由此可导出一系列有用的恒等式,如里奇恒等式等,这些恒等式及各种协变导数之间的相互关系就形成了张量分析的主要内容。例如当??,ξ,α分别为数量场、反变向量场及协变向量场时,它们满足下列关系:
式中分别是联络Г的挠率张量和曲率张量。特别,当挠率为零时,有称这些公式为里奇恒等式。
在黎曼流形中联络Г常取为列维-齐维塔联络,这时,Г就是第二类克里斯托费尔记号。
,式中gij是黎曼度量张量的分量。当欧氏空间中采用笛卡儿直角坐标系时,{}=0,这时协变微分就化成为普通微分。
微分几何中一些重要的微分算子在局部坐标系下可用协变导数表达出来。如向量场的散度为
,式中g=det(gij)。如α为p形式,则α 的外微分dα及伴随外微分δα分别为
式中"∧"表示缺掉相应的指标。因而拉普拉斯算子Δ=dδ+δd的表示式为式中。当p=0时,即对数量场??,有
作用在数量场??上的算子称为第二类贝尔特拉米微分算子。有Δ2??=-Δ??。作用在数量场??上的第一类贝尔特拉米微分算子Δ1为
。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条