说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 模糊过程神经元网络
1)  Fuzzy process neural network
模糊过程神经元网络
2)  fuzzy neural network
模糊神经元网络
1.
This paper presented a fuzzy neural network algorithm of multi-source information fusion,which based on the clustering idea of integrating potential field topology,hierarchical clustering a.
文章提出了多源信息融合的模糊神经元网络算法,且基于势场拓扑层次聚类融合FCM算法的聚类思想,将模糊集合理论引入神经元网络,构成基于多判据信息融合的模糊神经元网络模型,并对该网络进行了优化。
2.
Based on zero order takagi sugeno model,a simple yet effective approach to fuzzy neural network (FNN) modeling for complex systems with input output data is presented.
基于零阶 T- S模糊模型 ,本文指出了一种实用的输入输出数据进行复杂系统的模糊神经元网络建模的方法 。
3.
Second we adopted the intervals algorithm of the fuzzy sets,extend the traditional BP-algorithm and proposed a bell-shaped fuzzy number based learning algorithm of a multilayer feedforword fuzzy neural network.
描述一个多层前馈式模糊神经元网络的学习机制。
3)  process neural networks
过程神经元网络
1.
A process neural networks model and its application to dynamic forecasting;
一种过程神经元网络模型及其在动态预测中的应用
2.
Process neural networks with time-varying inputs and outputs and learning algorithm;
一种时变输入输出过程神经元网络及学习算法研究
3.
Aimed at the problems of the time-varying information processing and the dynamic system modeling, two kinds of process neural network models,including the rational formula process neural networks and the process neural networks with time-varying inputs and outputs function,were built in this paper.
针对时变信息处理和动态系统建模等类问题,建立了输入输出均为时变函数的过程神经元网络和有理式过程神经元网络2种网络模型。
4)  process neural network
过程神经元网络
1.
Research and application of process neural network with two hidden-layer based on expansion of basis function;
基于基函数展开的双隐层过程神经元网络及其应用
2.
A dynamic prediction method based on process neural networks is proposed for the process forecasting and prediction problem of dynamic system.
针对动态系统过程预测预报问题,提出了一种基于过程神经元网络的动态预测方法。
3.
A modular process neural network model based on multi-basis-functions is brought forward in this article,in which the spatial aggregation and temporal limited accumulation of discrete-time inputs are involved.
提出一类基于多种正交基函数的模块化过程神经元网络模型,它融入了多时变输入的空间聚合和作用域限制的时间累积,并采用多种正交基函数在较小网络规模的条件下保证系统各种输入输出的精度,应用混合隐含层综合考虑了系统多类型输入对系统的作用,并应用模块化级联的方式在一定程度上减小了网络的总体容量,从而提高了整个网络的学习速度。
5)  mixed fuzzy nerve net
混合式模糊神经元网络
6)  multi-aggregation process neural networks
多聚合过程神经元网络
1.
Aimed at the information process problem that the system inputs are multivariate process functions and multi-dimension process signals, this paper proposes a kind of the multi-aggregation process neuron and the multi-aggregation process neural networks model.
针对系统输入为多元过程函数以及多维过程信号的信息处理问题,提出了多聚合过程神经元和多聚合过程神经元网络模型。
补充资料:基于模糊神经网络的模具产品报价系统
一、 报价系统概论
产品报价是指被讯价方根据自身所处市场环境、生产、经营、管理现状等因素而针对讯价方所指定的产品及其特殊的功能需求所报出的价格。产品报价是一种复杂而有重要的经济行为。产品报价的高低好坏有利于报价双方能面对面坐下来并经多次商讨而确定产品的成交价格并最终达成协议,签订合同。产品报价[1],特别是比较复杂的产品报价,如模具产品报价,需要许多领域人员的协调工作,如技术、财务、商务等,必须考虑各种结构化和非结构化的因素。其中结构化因素如技术参数、结构参数、工艺参数、制造成本、费用分配比例等比较易于确定的因素。而非结构化因素如最终利润率、赢得订单的几率等,则需要考虑企业内外环境等各种不确定因素。从信息系统角度来考虑,整个报价过程是一个信息流动和信息处理的过程,包括信息的产生、传递、处理、存储;具有很复杂的信息流,涉及到销售、经营、设计、会计、生产计划、采购等等。
[1]目前国内外开发的报价系统依其功能可大致分为五类,即商务型报价系统、生产型报价系统、工程型报价系统、投标型报价系统和集成型报价系统。工程型报价系统实际上是产品选型、初步设计加成本估算,其最终报价的形成有待提高;商务型报价系统,是在技术报价的基础上,对产品价格进行分析、计算、结合价格变化趋势预测的结果,确定合适的产品价格。其全部价值是基于产品成本而做的加价判断或推理。二者各自突现了自己的重点,如前者对报价的结构化问题处理较好,而后者对报价所涉及的非结构化因素研究较为深刻。
二、 模具产品的报价
模具产品的报价是一个非常复杂的过程。但从单纯的仅考虑结构化因素的技术报价来看。
 


框一、功能分解与评价:
根据客户提供的工件图纸及交货期限、或其他特殊的要求分析工件的结构特征、工艺参数等因素,提取有用信息。
框二、产品方案设计:
根据功能评价所提供的有用信息及交货期限等,考虑自身的生产、经营、管理现状,确定合理的方案。主要有工件排样、模具类型选择、压力机参数估算选型等。
框三、结构设计:
根据设计方案确定模具的合理结构和大致尺寸,同时选定模架形式等。
框四、成本估算:
根据工厂积累的有关经验数据(如外构件的价格、人工费用、材料费用、费用分配比例等)和以往开发同类产品的报价经验,由结构设计和方案设计所得的有关信息,估算产品成本。
框五、历史经验资料、数据:
为方案、结构、成本估算提供各种所需的资料、数据。包括各种工具书、国家标准、材料费用表、人工费用表、费用分配比例、以往开发经验及相关数据等非常有用的各种信息。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条