1) oscillation of solutions
解振动
1.
Sufficient conditions are obtained for oscillation of solutions of a nonlinear delayed hyperbolic differential equations 2ut 2=a(t)Δu+si=1a i(t)Δu(x,t-ρ i(t))-f(x,t,u)-kj=1g j(x,t,u(x,t-σ j)),(x,t)∈Ω×(0,∞) with u=0,(x,t)∈Ω× 0,∞).
给出具有非线性时滞的双曲型微分方程定解问题2ut2=a(t)Δu+si=1ai(t)Δu(x,t-ρi(t))-f(x,t,u)-kj=1gj(x,t,u(x,t-σj)),u=0,(x,t)∈Ω×〔0,∞),其中(x,t)∈Ω×(0,∞)的解振动的几个充分条件。
2) nonoscillatory solution
非振动解
1.
Existence of nonoscillatory solutions for forced higher order differential equations;
带强迫项的高阶微分方程非振动解的存在性
2.
The existence of nonoscillatory solution of a third order quasilinear differential equation;
一类三阶拟线性微分方程非振动解的存在性
3.
The existence of nonoscillatory solutions for higher order nonlinear neutral system of difference equations;
一类高阶非线性中立型差分方程组非振动解的存在性
3) non-oscillatory solutions
非振动解
1.
The purpose of this paper is to prove the existence of non-oscillatory solutions to second-order neutral time-lag differential equation with positive/negative coefficient by using contraction-image principle through defining an operator from a bounded,closed,and convex subset into Banach space.
通过定义有界闭凸子集到B anach空间上的一个算子,应用压缩映像原理讨论了带有正负系数的二阶中立型时滞微分方程非振动解的存在性,得到该方程非振动解存在的一个充分条件。
2.
By using Banach compression-imaging principle,the authors have made a discussion over the asymptotic behavior of non-oscillatory solutions to first-order neutral differential equation with forcing term,obtaining the sufficient conditions for every non-oscillatory solutions to the equation hereinabove tends to zero when t tends to infinity(t→∞).
应用压缩映像原理讨论了一类带强迫项的一阶中立型微分方程非振动解的渐近性,得到了该方程的所有非振动解当t→∞时趋于零的充分条件。
3.
The existence and asymptotic behaviour of non-oscillatory solutions of this equation are studied.
对二阶中立型时滞差分方程Δ(rnΔ(xn+pnxn-τ))+qnf(xn-σ)=0非振动解的存在性及渐近性进行了研究。
4) vibration uncoupling
振动解耦
5) non-oscillatory solution
非振动解
1.
Consider a class of neutral difference equation with !maxima", some results for the asymptotical properties of all non-oscillatory solutions of the equation are obtained, that is, sufficient conditions for all non-oscillatory solutions {x-n} satisfying {lim}n→∞ x-n=0 or {lim}n→∞|x-n|=∞ are obtained, which extend the corresponding results of the references.
考虑一类带有极大值项的中立型差分方程,得到了方程非振动解渐近性的若干结果,即方程的所|xn|=∞的充分条件,推广了已有文献中的相关结果。
2.
This paper discusses the asymptotic behavior of non-oscillatory solutions of a class higher order linear differential equationy(n)+p(t)y′+q(t)y=0Some sufficient condition for the asymptotic behavior of non-oscillatory solutions of the equation are obtained.
研究了一类高阶微分方程y(n)+p(t)y′+q(t)y=0解的渐近性质,获得了该类方程非振动解的渐近性的充分条件。
3.
Asymptotic behavior for the oscillatory solutions and non-oscillatory solutions for a class of high order non-linear neutral differential equations.
本文研究了一类高阶非线性中立型泛函微分方程的非振动解及振动解的渐近性质,得到了其非振动解及振动解的一些相关的渐近条件,推广了有关文献的结果。
补充资料:点振子振动和点电极振子振动
分子式:
CAS号:
性质:又称点振子振动和点电极振子振动。振动能量绝大部分集中在点电极范围内,形成“能量封闭”的振动模式。振子电极面远小于压电陶瓷片的总面积,且与厚度有适宜的匹配关系。在交变电场作用下,沿厚度方向产生振动,其振幅随着至电极中心距离的增加,呈指数式衰减。谐振频率与压电陶瓷片的厚度有关。为提高频率通常将压电陶瓷片磨得很薄,有时考虑到压电陶瓷自身强度太低,可用特制的陶瓷片作垫片来防止压电陶瓷片损坏。常用于高频场合。
CAS号:
性质:又称点振子振动和点电极振子振动。振动能量绝大部分集中在点电极范围内,形成“能量封闭”的振动模式。振子电极面远小于压电陶瓷片的总面积,且与厚度有适宜的匹配关系。在交变电场作用下,沿厚度方向产生振动,其振幅随着至电极中心距离的增加,呈指数式衰减。谐振频率与压电陶瓷片的厚度有关。为提高频率通常将压电陶瓷片磨得很薄,有时考虑到压电陶瓷自身强度太低,可用特制的陶瓷片作垫片来防止压电陶瓷片损坏。常用于高频场合。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条