1) compatibility equation/generalized wedge function
协调方程/广义楔函数
2) Generalized Wedge Function
广义楔函数
3) generalized compatibility equations
广义协调方程
1.
Brief development process of the finite element method,foundation of quasi conforming element has been analyzed from weak formulation generalized compatibility equations and its weak continuity condition.
从弱形式广义协调方程和拟协调元的弱连续条件等方面分析了拟协调元的理论基础 ,从形式上看弱形式对函数的连续性降低了 ,但对实际的物理问题常常较原始的微分方程更逼近真正解 ,其做法就是广义协调方程的直接解 ,自然满足平衡对弱连续条件的要求。
4) the generalized conforming element method
广义协调元方法
5) Generalized quasimonotone
广义拟单调函数
6) generalized monotone function
广义单调函数
补充资料:应变协调方程
线性弹性力学中的六个应变分量εij之间必须满足的微分方程。 六个应变分量εij是由三个位移分量导出的,它们彼此之间存在一定的内在联系,这些联系就是应变协调方程。应变协调方程有六个,可以表示为:
应变协调方程有下列重要特性:①任何由三个连续可微的位移分量按弹性力学的几何方程导出的一组应变分量,都满足应变协调方程。因此,不满足应变协调方程的应变不可能是从真实位移按几何方程的关系产生的。②上述方程中的任何五个成立,并不意味着第六个一定成立,即六个应变协调方程具有一定的独立性。③任何一个应变分量恒满足的线性微分关系,都可以化为上述六个应变协调方程的线性组合,所以应变协调方程概括了应变分量之间的全部恒等微分关系。④对于单连通的区域,如果给出的应变分量满足上述方程,则可以从位移和应变的关系求得单值、连续的三个位移分量。所以对于单连通区域,应变协调方程概括了应变分量之间的全部必然联系。⑤对于多连通区域,应变协调方程不能概括应变分量之间的全部必然联系。事实上,应变分量之间有一些恒等的积分关系,它们不从属于应变协调方程所表达的微分关系。
应变协调方程有下列重要特性:①任何由三个连续可微的位移分量按弹性力学的几何方程导出的一组应变分量,都满足应变协调方程。因此,不满足应变协调方程的应变不可能是从真实位移按几何方程的关系产生的。②上述方程中的任何五个成立,并不意味着第六个一定成立,即六个应变协调方程具有一定的独立性。③任何一个应变分量恒满足的线性微分关系,都可以化为上述六个应变协调方程的线性组合,所以应变协调方程概括了应变分量之间的全部恒等微分关系。④对于单连通的区域,如果给出的应变分量满足上述方程,则可以从位移和应变的关系求得单值、连续的三个位移分量。所以对于单连通区域,应变协调方程概括了应变分量之间的全部必然联系。⑤对于多连通区域,应变协调方程不能概括应变分量之间的全部必然联系。事实上,应变分量之间有一些恒等的积分关系,它们不从属于应变协调方程所表达的微分关系。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条