说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 永磁无换向器电机
1)  commutatatorless motor
永磁无换向器电机
2)  commutatorless motor
无换向器电机
1.
According to the basic behavior of an AC commutatorless motor, the equivalent circuit and mathematical model are developed by the direct analysis method for operating conditions under the single current mode and commutation mode.
采用直接分析法得到交流无换向器电机在两种工作模式下的等效电路和数学模型。
3)  commutatorless motor
无换向器电动机
1.
This paper presents the research on the commutatorless motor.
本课题通过无换向器电动机装置的研制,探讨了无换向器电动机的基本工作原理及其数学模型,利用电路设计集成软件Protel 99完成了控制系统的硬件设计,利用MCS-51汇编语言完成了各个程序的编写和调试工作。
2.
In this Paper We discuss the principles of commutatorless motor at first, and give its fonnular of speed and torque, then according to several key problems we give some methods to solve.
首先分析了无换向器电动机的工作原理,并给出其转速公式和转矩公式,然后就无换向器电动机系统中若干关键问题进行研究。
4)  permanent-magnet-type bearingless motor
永磁无轴承电机
5)  permanent magnet brushless motor
永磁无刷电动机
1.
Finite element analysis of straight and skewed slot permanent magnet brushless motor;
直槽与斜槽式永磁无刷电动机的有限元分析
2.
Mathematical model and closed-loop speed control strategies of dual-rotor permanent magnet brushless motors were analyzed.
在普通永磁无刷电动机基础上,分析了双转式永磁无刷电动机的数学模型及速度闭环控制策略,并在该基础上建立以TMS320F2407为核心的闭环控制软硬件系统,并进行了试验。
3.
Permanent magnet brushless motor(PMBM) is widely used in driving system of electric vehicle because of its high power density, wide speed regulation and high efficiency.
永磁无刷电动机以其功率密度高、调速范围宽以及运行效率高而广泛应用于电动车辆的驱动系统,而采用120°方波电流控制的永磁无刷电动机虽然控制方式简单,但仿真分析模型复杂。
6)  permanent magnet brushless motor
永磁无刷电机
1.
In a permanent magnet brushless motor, airgap field excited by a 2-pole magnet ring with parallel magnetisation is sinusoidal.
永磁无刷电机中,平行充磁的2极磁环产生的气隙磁场是正弦分布的。
2.
Using the low frequency electromagnetic field simulation software and the Matlab/Simulink,when the surface mounted rare earth permanent magnet brushless motor is driven by trapezoidal and sinusoidal current,and its steady-state torque and dynamic torque are analyzed.
使用电磁场分析软件和Matlab/Simulink仿真工具,分别对永磁无刷电机方波和正弦波驱动时的稳态电磁转矩和动态电磁转矩进行了仿真分析,对两种驱动方式下的稳态电磁转矩的大小、转矩脉动进行了比较。
补充资料:直流电机的换向
      带换向器的电枢绕组在运行中的一种特有现象。图1所示为最简单的直流电机模型,其换向原理如下:假定电枢只有一个线圈abcd,换向器只有两个换向片,它们分别与线圈首、尾相连接,A与B为静止的两个电刷。当线圈在磁极N、S中逆时针转动时,处于N极下的导体ab产生的电动势,方向为从b至a,处于S极下的导体cd产生的电动势方向为从 d至c。但当线圈转动180°后,导体ab与导体cd位置对调,导体中的电动势也与原来的方向相反。所以在线圈连续旋转时,导体及整个线圈的电动势是在正最大值与负最大值之间不断交变,故为交流电动势。但由图不难看到,电刷A只与处在N极下的导体引出端相连,永为正极性;电刷B只与处在S极下的导体引出端相连,永为负极性。故电刷所引导出来的电动势及电流的方向始终不变,也就是说,对于外电路而言,引出的是直流电。这就是直流电机换向的基本原理。通常,电枢绕组由很多线圈串、并联而成,其中各线圈电流换向情况还要复杂些。图2为一个元件(一个单元线圈)在被电刷短路时发生的换向过程。
  
  当电枢元件随着电枢的旋转,依次从一条支路转移到另一支路时,各元件中的电流也就从一种流动方向改变为另一种流动方向。这种利用机械方法(换向器和电刷)使元件中电流变换方向的现象称为换向。换向过程总是与元件被电刷短路的过程相伴随的。图2中,当元件a开始被电刷短路时(图2a),元件电流便进入了换向过程。当元件a脱离短路时(图2c),换向过程也就结束。整个过程所耗时间称为换向周期(Tc)。换向周期的长短与电刷的宽度及电枢的转速有关。电刷越宽,转速越慢,换向周期越长。
  
  换向过程中,由于电流变化,换向元件中会产生自感电动势,俗称电抗电动势。当同槽中有多个元件同时换向时,电抗电动势还包括它们之间的互感电动势在内。这种电动势起阻止换向的作用。电抗电动势越大,换向越困难,甚至在电刷边上会产生火花。严重的火花有时发展成换向器环火而损坏换向器。
  
  改善换向的主要方法是在两个主磁极之间装置换向极,用以在换向元件中产生切割电动势来抵消电抗电动势。因为电抗电动势是随着电流增大而增大的,故换向极绕组需与电枢串联,使换向极磁场及其相应的切割电动势也能随电枢电流同步增大。换向极应接成与电枢电流产生的磁场极性相反。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条