1) deleterious effect of ground water
地下水不良作用
2) unfavorable groundwater
不良地下水
3) unfavorable condition
不良地质作用
1.
Ground bearing capacity and suitabilities of structure are appraised and disposal schemes are suggested for unfavorable condition.
通过对郑州市区建设场地实际资料的分析,将郑州市区划分为两个工程地质区和四个亚区;研究了不同工程地质区和亚区内不同岩性土的物理、力学性质等工程地质特征,对各区的建筑物适宜性和地基承载力进行了评价,并对不良地质作用提出了处理方案。
5) submergence
[英][səb'mə:dʒəns] [美][səb'mɝdʒəns]
地下水浸没作用
1.
Computational method for consolidation settlement considering submergence due to groundwater during preloading;
考虑地下水浸没作用的固结沉降计算方法
6) simulated groundwater effect
模拟地下水作用
补充资料:地下水的地质作用
地下水对岩层破坏和建造作用的总称。地下水在流动过程中对流经的岩石可产生破坏作用,并把破坏的产物从一地搬运到另一地,在适宜的条件下再沉积下来。因此,地下水的地质作用包括剥蚀作用、搬运作用和沉积作用。
剥蚀作用 地下水的剥蚀作用是在地下进行的,所以又称为潜蚀作用。按作用的方式分为机械潜蚀作用与化学溶蚀作用。工程地质学中的潜蚀概念不包括可溶性岩石的化学溶蚀作用。
① 机械潜蚀作用。地下水在流动过程中,对土、石的冲刷破坏作用。地下水在土、石中渗透,水体分散,流速缓慢,动能很小,机械冲刷力量微弱,只能将松散堆积物中颗粒细小的粉沙、泥土物质冲走,使其结构变松,孔隙扩大。但经过长时间的冲刷作用,也可以形成地下空洞,甚至引起地面陷落,出现落水洞和洼地。这种现象常见于黄土发育地区。疏松的钙质粉砂岩也易受到冲刷破坏。地下水充满松散沉积物的孔隙时,水可润滑、削弱、以至破坏颗粒间的结合力,产生流沙现象;或浸润粘土物质,使之具有可塑性,引起粘土体积膨胀,导致土层蠕动和变形。
② 化学溶蚀作用。地下水可溶解可溶性岩石所产生的破坏作用,又称喀斯特作用。地下水中普遍含有一定数量的二氧化碳,这种水是一种较强的溶剂,它能溶解碳酸盐岩(如石灰岩,化学成分为碳酸钙),使碳酸盐变为溶于水的重碳酸盐,随水流失。碳酸盐岩中常发育裂隙,更易遭受溶蚀,岩石中的裂隙逐渐扩大成溶隙或洞穴。在碳酸盐岩地区,喀斯特作用可产生一系列如溶沟、石芽、溶洼、溶柱、落水洞、溶洞、暗河、地下湖和石林等喀斯特地形(见喀斯特)。
搬运作用 地下水将其剥蚀产物沿垂直或水平运动方向进行搬运。由于流速缓慢,地下水的机械搬运力较小,一般只能携带粉沙、细沙前进。只有流动在较大洞穴中的地下河,才具有较大的机械动力,能搬运数量较多、粒径较大的砂和砾石,并在搬运过程中稍具分选作用和磨圆作用,这些特征类似于地表河流。
地下水主要进行化学搬运。化学搬运的溶质成分取决于地下水流经地区的岩石性质和风化状况,通常以重碳酸盐为主,氯化物、硫酸盐、氢氧化物较少。搬运物呈真溶液或胶体溶液状态。化学搬运的能力与温度和压力有关,随地下水温度增高和承受压力加大而增大。地下水化学搬运物除少数沉积在包气带的中、下部外,大部分搬运至饱和带,最后输入河流、湖泊和海洋。全世界河流每年运入海洋的23.4亿吨溶解物质中大部分来源于地下水。
沉积作用 包括机械沉积作用和化学沉积作用,以化学沉积作用为主。
地下河流到平缓、开阔的洞穴中,水动力减小,在这些洞穴中形成砾石、砂和粉沙等堆积。由于水动力较小,地下河机械沉积物具有粒细、量少、分选性与磨圆性差的特征,沉积物中可能混杂有溶蚀崩落作用产生的呈角砾状的崩积物。
含有溶解物质的地下水在运移中,由于温度、压力变化,可发生化学沉积。例如,由于温度升高或压力降低,二氧化碳逸出,重碳酸钙分解而发生沉淀;或由于水温骤降或水分蒸发,水中溶解物质达到过饱和而发生沉淀。
地下水中溶质在粒间孔隙内沉淀,可把松散堆积物胶结成致密的坚硬岩石。常见的起胶结作用的物质有铁质(氧化铁或氢氧化铁)、钙质(碳酸钙)和硅质(二氧化硅)等。
地下水中溶质在岩石裂隙内沉淀或结晶,构成脉体。如由碳酸钙组成的方解石脉,由二氧化硅组成的石英脉。含铁、锰的沉淀物在裂隙面上呈柏叶状,称假化石。
饱含重碳酸钙的地下水,沿岩石的裂隙或断层流入溶洞,压力降低,二氧化碳逸出,水分蒸发,碳酸钙沉淀。沉淀物呈锥状、柱状,横切面具圈层构造,称为溶洞滴石,包括石钟乳、石笋和石柱。
含有溶质的地下水流出地表,在泉口处沉淀形成的化学堆积物,称为泉华。泉华疏松多孔。成分为碳酸钙的称钙华或石灰华,成分为二氧化硅的称硅华。(见彩图)
参考书目
李叔达主编:《动力地质学原理》,地质出版社,北京,1983。
张倬元、王士天、王兰生编著:《工程地质分析原理》,地质出版社,北京,1981。
剥蚀作用 地下水的剥蚀作用是在地下进行的,所以又称为潜蚀作用。按作用的方式分为机械潜蚀作用与化学溶蚀作用。工程地质学中的潜蚀概念不包括可溶性岩石的化学溶蚀作用。
① 机械潜蚀作用。地下水在流动过程中,对土、石的冲刷破坏作用。地下水在土、石中渗透,水体分散,流速缓慢,动能很小,机械冲刷力量微弱,只能将松散堆积物中颗粒细小的粉沙、泥土物质冲走,使其结构变松,孔隙扩大。但经过长时间的冲刷作用,也可以形成地下空洞,甚至引起地面陷落,出现落水洞和洼地。这种现象常见于黄土发育地区。疏松的钙质粉砂岩也易受到冲刷破坏。地下水充满松散沉积物的孔隙时,水可润滑、削弱、以至破坏颗粒间的结合力,产生流沙现象;或浸润粘土物质,使之具有可塑性,引起粘土体积膨胀,导致土层蠕动和变形。
② 化学溶蚀作用。地下水可溶解可溶性岩石所产生的破坏作用,又称喀斯特作用。地下水中普遍含有一定数量的二氧化碳,这种水是一种较强的溶剂,它能溶解碳酸盐岩(如石灰岩,化学成分为碳酸钙),使碳酸盐变为溶于水的重碳酸盐,随水流失。碳酸盐岩中常发育裂隙,更易遭受溶蚀,岩石中的裂隙逐渐扩大成溶隙或洞穴。在碳酸盐岩地区,喀斯特作用可产生一系列如溶沟、石芽、溶洼、溶柱、落水洞、溶洞、暗河、地下湖和石林等喀斯特地形(见喀斯特)。
搬运作用 地下水将其剥蚀产物沿垂直或水平运动方向进行搬运。由于流速缓慢,地下水的机械搬运力较小,一般只能携带粉沙、细沙前进。只有流动在较大洞穴中的地下河,才具有较大的机械动力,能搬运数量较多、粒径较大的砂和砾石,并在搬运过程中稍具分选作用和磨圆作用,这些特征类似于地表河流。
地下水主要进行化学搬运。化学搬运的溶质成分取决于地下水流经地区的岩石性质和风化状况,通常以重碳酸盐为主,氯化物、硫酸盐、氢氧化物较少。搬运物呈真溶液或胶体溶液状态。化学搬运的能力与温度和压力有关,随地下水温度增高和承受压力加大而增大。地下水化学搬运物除少数沉积在包气带的中、下部外,大部分搬运至饱和带,最后输入河流、湖泊和海洋。全世界河流每年运入海洋的23.4亿吨溶解物质中大部分来源于地下水。
沉积作用 包括机械沉积作用和化学沉积作用,以化学沉积作用为主。
地下河流到平缓、开阔的洞穴中,水动力减小,在这些洞穴中形成砾石、砂和粉沙等堆积。由于水动力较小,地下河机械沉积物具有粒细、量少、分选性与磨圆性差的特征,沉积物中可能混杂有溶蚀崩落作用产生的呈角砾状的崩积物。
含有溶解物质的地下水在运移中,由于温度、压力变化,可发生化学沉积。例如,由于温度升高或压力降低,二氧化碳逸出,重碳酸钙分解而发生沉淀;或由于水温骤降或水分蒸发,水中溶解物质达到过饱和而发生沉淀。
地下水中溶质在粒间孔隙内沉淀,可把松散堆积物胶结成致密的坚硬岩石。常见的起胶结作用的物质有铁质(氧化铁或氢氧化铁)、钙质(碳酸钙)和硅质(二氧化硅)等。
地下水中溶质在岩石裂隙内沉淀或结晶,构成脉体。如由碳酸钙组成的方解石脉,由二氧化硅组成的石英脉。含铁、锰的沉淀物在裂隙面上呈柏叶状,称假化石。
饱含重碳酸钙的地下水,沿岩石的裂隙或断层流入溶洞,压力降低,二氧化碳逸出,水分蒸发,碳酸钙沉淀。沉淀物呈锥状、柱状,横切面具圈层构造,称为溶洞滴石,包括石钟乳、石笋和石柱。
含有溶质的地下水流出地表,在泉口处沉淀形成的化学堆积物,称为泉华。泉华疏松多孔。成分为碳酸钙的称钙华或石灰华,成分为二氧化硅的称硅华。(见彩图)
参考书目
李叔达主编:《动力地质学原理》,地质出版社,北京,1983。
张倬元、王士天、王兰生编著:《工程地质分析原理》,地质出版社,北京,1981。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条