2) Electromagnetic Field Numerical Analysis
电磁场数值分析
1.
Electromagnetic Field Numerical Analysis Based on MATLAB;
基于MATLAB的电磁场数值分析
3) Electrostatic numerical computation
静电场数值分析
5) numerical analysis of mode-field
模场数值分析
6) magnetic field analysis
磁场分析
1.
Design method and magnetic field analysis of axial-magnetized permanent magnet micromotor;
轴向磁化永磁微电机磁场分析及设计方法研究
2.
Application of ANSYS finite element analysis software to locomotive main alternator electromagnetic field analysis;
ANSYS有限元分析软件在机车主发电机电磁场分析中的应用
3.
Combining Preisach model and finite element analysis,a dynamic magnetic field analysis is implemented for a permanent magnet assembly in a process of assembling.
该方法将Preisach磁滞模型和有限元法相结合,完成对强磁场永磁机构装配过程的动态磁场分析。
补充资料:电磁场数值计算
电磁场数值计算
numerical computation of electromagnetic field
d{创飞C心ho日95卜日z日妇suo门电磁场数值计算(numerioal eomputation“electromagnetie field)用数值分析方法求解电磁场问题。任意场域中的电磁场分布均可以通过求解场量所满足的一定边界条件下的偏微分方程而得到,这称为电磁场的边值问题。除了较简单的场域模型之外,边值问题一般难以直接求解。数值计算方法是:根据给定的场域形状、尺寸和给定的边界条件,用数值方法求出近似地满足场方程和边界条件的近似解。常用的数值计算方法包括:差分法、有限元法、边界元法和模拟电荷法等。下面以二维静电场中电位的求解为例简述这四种方法。 差分法以差分原理为基础,将场域剖分为许多小区域称为网格单元,单元顶点称网格节点。用各节点上电位的差商来近似表示电位在该点的偏导数,从而将偏微分方程转化为代数方程组,由此求得各离散点上的电位。场域中电位,的分布可以通过求解下面泊松方程(见拉普拉斯方程)求得 甲2甲一f一一一一 ll任中沪卜之、|边界条件是:其中了一一尸/。,户为已知电荷密度,常数。为电容率;V。为已知电位;21十22构成场域边界。设场域如图所示,图中细线是将场域剖分为许多边长相同的正方形网格,边界条件为粗线边界上电位已知,另两条直线边界上电位的法向导数为零。根据差分原理,上面的泊松方程在点(i,j)处可以近似表示为外*:功十外一:,j)+外,,十1)+外,二,)一4几,j)一矿人,力州)一利G孝一*酬dl一「(Gf)d: JI、口,‘《了了‘了J,式中,l为:的边界;。为边界上指向区域外侧的法线方向;基本解G~1n(1/}r一rl{)/(2动,r是从坐标系原点到了中任一点的矢径;G满足甲ZG-一沙(1;一r,}),占(·)是Dirac占函数。 上式表明,场域中任一点的电位可分为两部分:一部分由场域边界积分表示,另一部分由已知的(Gf)的面积分表示。将场域边界近似为许多直线段单元,则上式中的边界积分可以表示为各单元上m个边界节点由、___._二,、。。二神}妙}、电位叭,仰,…,外及其法向导数带},…,举}的一’一““‘’‘一‘、一’“一而!1”而}、”‘线性叠加。它们共Zm个量。由边值问题知,在场域边界上,节点电位或电位的法向导数总有一个已知,即未知量数为m。为求出它们,将电位观察点移到边界节点上。对每个节点可写出一个方程,共、个方程,由此解出边界节点上的未知电位或电位的法向导数;从而可求得场域内任意点的电位。 模拟电荷法在边界之外根据经验放置有限个电荷即模拟电荷,据之计算边界上各点的电位。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条