2) formula of lower bounds for Ramsey numbers r(3,q)
Ramsey数r(3,q)下界公式
3) Ramsey number
Ramsey数
1.
Ramsey numbers r(K_(1, 4), G) for all three-partite graphs G of order six;
K_(1 ,4)和六阶三部图的Ramsey数r(K_(1 ,4),G)(英文)
2.
A new solution to the lower bound of Ramsey number;
Ramsey数下界的一个新结果
3.
New lower bound for three classical Ramsey number R(3,q);
三个Ramsey数R(3,q)的新下界
4) Ramsey numbers
Ramsey数
1.
On properties and lower bounds of Ramsey numbers;
四阶Ramsey数的性质和下界
2.
On Ramsey numbers and restriction coexistence;
Ramsey数与约束共存性
3.
Ramsey numbers are of great significance in combinatorial mathematics, but so far people do not know much about them.
对著名的组合数学问题——Ramsey数问题进行了研究,利用Ramsey数的有关性质和归纳法,得到并证明了Ramsey数的一个新上界公式,即N(q_1,q_2,…,q_t;2)≤(q_1+q_2+…+q_t-2t+2)!/[(q_1-1)!(q_2-1)!(q_3-2)!…(q_t-2)!],这个新的上界公式改进了几十年来组合数学和图论方面的专著和教科书中的相应结论,它对计算具体的Ramsey数值很有意义。
5) generalized Ramsey numbers
一般化的Ramsey数
1.
This paper presents an estimation of upper bound of generalized Ramsey numbers r(f1≥n1,f2≥n2,…,fk≥nk) by induction.
该文运用归纳法给出了一般化的Ramsey数r(f1≥n1,f2≥n2,…,fk≥nk)一个一般的上界估计。
6) critical Ramsey edge
Ramsey临界边
1.
An interesting fact has been found that changing the color of 4 critical Ramsey edges in the (3,10,38)-Ramsey graph from color 1 into color 2,the (3,10,38)-Ramsey graph becomes a 10-regular cyclic (3,10,38)-Ramsey graph,which has the same chord length as the (3,11,45)-Ramsey graph.
进一步,我们发现了一个有趣的结果,作为(3,11,45)-Ramsey图的一个子图(3,10,38)-Ramsey图,改变(3,10,38)-Ramsey图的4条Ramsey临界边,该图将变为另一个10正则的循环(3,10,38)-Ramsey图。
补充资料:数不胜数
1.数也数不清。形容很多。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条