1) position vector of the symmetric point
对称点的径向量
2) radially symmetric
径向对称
1.
We consider the Henon equation where Ω is the unit ball in R~N, a > 0 is aj constant, and p is superlinear and subcritical, that is When the dimension N > 3, it is known that the least-energy solutions cannot be, as p approaches the critical exponent, radially symmetric, and the maximum point will converge to the boundary.
我们考虑Henon方程Ω是R~N中的单位球,α>0一个常数,指数p是超线性且次临界的,即前人已经证明了维数N≥3时,该方程的极小能量解在p趋向于临界指数时不是径向对称的,并且其最大值点会趋向于边界。
4) position vector of the vertical projection's point
射影点的径向量
5) radially symmetric solution
径向对称解
1.
Uniqueness of radially symmetric solutions for a class of nonlinear elliptic equations is proved.
证明了一类非线性椭圆型方程径向对称解的唯一性。
6) radial symmetry
径向对称性
1.
It is proved that the unconstrained minimizers for the p(x)-Laplacian integral functionals satisfying some natural conditions must possess radial symmetry.
证明了在自然条件下p(x)-Laplace积分泛函的无约束极小必具径向对称性,推广了Lopes在p=2时的一个相应的结
2.
It is proved that the unconstrained minimizers and the constrained minimizers for the p-Laplacian integral functionals satisfying some natural conditions must possess radial symmetry.
证明了在自然条件下 p- Laplace积分泛函的无约束极小和约束极小必具径向对称性 ,推广了 Lopes在 p =2时的相应结果 。
补充资料:径向量
径向量
radius vector
径向最lra咖5 vector;p幼.yc一砚KT0p],空间中一点的 从预先固定的称之为原点(面乡n)的某一点到该点的向量.BC3一3撰[补注]径向量亦称为位置向量(position vector). 如果给定了通过原点的基方向为Vl,…,V,的一组坐标轴,那么位置向量关于这个仿射坐标系(团功ccoordinate system)的第i个坐标由因数x,决定,使得x,。i是位置向量在第i个坐标轴上沿其余方向的平行投影.潘养廉译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条