说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 光学频移
1)  optical frequency shift
光学频移
2)  light frequency shift
光频移
1.
The light frequency shift,collision frequency shift and microwave power frequency shift on long term stability of influencing rubidium atom frequency standard are discussed in this paper.
对影响铷原子频标长期稳定度的光频移、碰撞频移和微波功率频移进行了分析。
2.
In the experimental system of the small cesium beam frequency standard with sharp angle incident laser light pumping and sharp angle incident laser light probing,the light frequency shift (mainly caused by AC Stark effect) caused by fluorescence from pumping region was calculated theoretically.
本文对斜入射激光抽运斜入射激光检测小型铯原子钟实验系统上光抽运区荧光引起的光频移 (主要是交流斯塔克移动 )作了理论计算。
3.
In this paper the light frequency shift of an optically pumped Cs beam frequency standard is reported and analyzed.
介绍了光抽运铯束管的光频移测量的原理和结果,并对结果进行了简要的分析,估算了射入Ramsey腔的相应光强。
3)  electro-optic frequency translation
电光移频
4)  light shift
光频移
1.
The light shift characteristics of the assembly were studied, and the conditions for minimum light shift and temperature coefficient were determined.
研究该种腔泡系统的光频移特性,确定了该腔泡系统的零光频移和零温度系数点。
5)  acousto-optic frequency shift
声光移频
1.
Then, the paper discussed the the acousto-optic frequency shifter that is the key device and its working principle.
对利用锁模脉冲拍频进行了理论计算,同时对拍频实验中关键器件声光移频器及其原理进行了讨论。
6)  Two-gratings frequency shifting
双光栅频移
补充资料:光学倍频
      又称光学二次谐波,是指由于光与非线性媒质(一般是晶体)相互作用,使频率为ω的基频光转变为2ω的倍频光的现象。这是一种常见而重要的二阶非线性光学效应。激光出现后的1961年,P.A.弗兰肯等人首次利用石英晶体将红宝石激光器发出的波长为 694.3纳米的激光转变成波长为347.15纳米的倍频激光,从而开始了非线性光学的主要历史阶段。图1是该实验装置的原理图。
  
  光学倍频来源于媒质在基频光波电场作用下产生的二阶非线性极化,即极化强度中与光波电场二次方成比例的部分。这一部分极化强度相当于存在一种频率为2ω的振荡电偶极矩。基频光波在媒质中传播的同时激励起一系列这样的振荡电偶极矩。它们在空间中的分布就好比一个按一定规则排列的偶极矩阵列,偶极矩之间有一定的相对位相。由于阵列中每个电偶极矩都要辐射频率为2ω的光波, 故偶极矩阵列的辐射应是这些光波互相干涉的结果。无疑,只当干涉是相互加强时才会有效地产生倍频光输出。为此,阵列中各振荡电偶极矩间要保持恰当的位相关系。 从此便产生了所谓位相匹配条件k(2ω)=2k(ω),它是产生光学倍频的重要条件,其中k(ω)和k(2ω)分别为基频和倍频光在媒质中的波矢。 当这两个光波沿同一方向传播时,此条件转化为要求媒质中倍频光的折射率n(2ω)等于基频光的折射率n(ω)。
  
  通常利用晶体本身的双折射性质来实现位相匹配。例如,对于负单轴晶体,在正常色散情况下,可选择光的偏振方向使基频光为寻常光,倍频光为非常光,再通过夹角θ 来实现位相匹配。参看图2,其中的圆(球面)是频率为ω 的寻常光的折射率曲面。它表示这种光在任意方向传播时折射率n(ω)均等于n憙 。该图的椭圆(椭球面)是频率为 2ω 的非常光的折射率曲面。它表示这种光的折射率n(2ω)随传播方向θ而变化, 在最大值n厺与最小值之间沿着椭圆变动。当θ=θm时球面与椭球面相交,即光沿此方向传播时n(ω)=n(2ω)。这意味着当选择此方向入射基频光时,位相匹配条件得到满足并在同一方向会有倍频光输出。
  
  当满足位相匹配条件时,倍频光功率密度正比于基频光功率密度的二次方,也正比于晶体作用长度的二次方。此外还与媒质的倍频系数(二阶非线性极化率)二次方成正比。
  
  光学倍频可将红外激光转变为可见激光,或将可见激光转变为波长更短的激光,从而扩展激光谱线覆盖的范围。在激光技术中已被广泛采用。为得到波长更短的激光可用多级倍频。
  
  目前已有许多种倍频晶体,且可达到相当高的倍频转换效率。对于可见及近红外的基频光,常用的倍频晶体有 KDP、KD*P、ADP、LiIO3、CDA等等, 转换效率可高达30%~50%。对于中红外基频光,常用晶体为Ag3AsS3、GdGeAs2、Te、CdSe等,转换效率为5%~15%左右。
  
  

参考书目
   P. A. Franken, et al., Generation of Optical Harmonics, Phys.Rev. Lett.,Vol.7,p.118,1961.
   F.Zernike,J.Midwinter,Applied Nonlinear Optics,John Wiley & Sons, New York, 1973.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条