1) iterative correction
迭代校正
1.
In this paper the iterative corrections──a high accuracy algorithm based on the finite element solutions of the second kind Fredholm integral equation are established.
对第二类Fredholm积分方程,以有限元解为基础,建立了一个高精度算法──迭代校正算法。
2) iteration correction method
迭代校正法
1.
On this basis,we proposed an iteration correction method,which iterates the skin depth to achieve the correction of skin effect for induction logging measured signals by using the real and the imaginary component of the apparent conductivity.
结果表明,迭代校正法的效果明显优于传统校正方法,且适用于各种线圈系结构,具有很强的通用性。
3) revised Newton-Raphson method
校正Newton-Raphson迭代
4) iterative radiometric calibration
迭代辐射校正
5) iterative refraction static correction
迭代折射静校正
6) iterated defect correction
有限元迭代校正
1.
In addition, we have proven that the iterated defect correction is convergent and give some numeric tests as experiments for theory results.
本文研究了两点边值问题插值算子的性质,证明了其插值算子具有压缩性及其有限元迭代校正解收敛,并给出了数值例子。
2.
At a result ,we have proven that the iterated defect correction is convergent and give some numeric tests as experiments for theory results.
本文研究了矩形元上插值算子的性质 ,证明了一维及二维情形下插值算子具有压缩性 ,从而证明了矩形元上有限元迭代校正解收敛 ,并对几种不同类型的 L型区域给出了数值例子 ,最后对三维及三维就以上情形作出了讨论 。
3.
In [3-4], the authors have proved that the iterated defect correction oflinear finite element solution for standard elliptic problems converges tothe petrov-Galerkin approximation solution by using the so-calledcontractivity of the interpolation operator for triangular and rectangularelements.
其中[3],[4]中分别利用三角形元上插值算子的压缩性质和矩形元上插值算子的压缩性质证明了标准的椭圆方程线性有限元迭代校正解收敛于 petrov-Galerkin 近似解。
补充资料:层层迭迭
1.见"层层迭迭"。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条