1) pseudospectral-difference scheme
拟谱-差分格式
2) pseudospectral scheme
拟谱格式
1.
By using the Jacobi approximation for the hyperbolic conservative equation,a semi-discrete pseudospectral scheme and the error estimation are given.
本文利用Jacobi逼近方法,建立求解双曲型守恒方程的半离散拟谱格式,并给出误差估计式。
3) Fourier pseudospectral
Fourier拟谱格式
1.
The Fourier pseudospectral discretization in space and the midpoint symplectic discretization in time are considered.
空间方向采用Fourier拟谱格式,时间方向为中点辛格式,得到的多辛半离散和全离散格式满足局部多辛守恒。
2.
The Fourier pseudospectral discretization in space and the midpoint symplectic discretization in time were considered.
利用Fourier拟谱格式对空间方向离散,中点辛格式对时间方向离散,得到相应的离散多辛守恒律,证明了离散局部能量守恒。
4) Fourier pseudo-spectral scheme
Fourier拟谱格式
1.
Multi-symplectic Fourier pseudo-spectral scheme of SRLW equation;
对称正则长波方程的多辛Fourier拟谱格式
2.
A multi-symplectic Fourier pseudo-spectral scheme are constructed by means of a Fourier pseudo-spectral method in space and an Euler mid-point method in time,At the same time,we get the full-discrete multi-symplectic conservation laws for the scheme.
在空间方向利用Fourier拟谱方法,在时间方向利用Euler中点格式进行离散此方程组,得到广义PC方程的多辛Fourier拟谱格式及其离散多辛守恒律。
3.
Using Fourier pseudo-spectral method in spatial direction and mid-point Euler method in time direction to the multisymplectic systems,a multisymplectic Fourier pseudo-spectral scheme is constructed.
在空间方向用Fourier拟谱方法离散此方程组,然后在时间方向用中点辛格式对半离散方程进行数值求解,得到了非线性“good”Boussinesq方程的多辛Fourier拟谱格式,同时也得到格式的半离散及全离散多辛守恒律。
5) Fourier pseudospectral scheme
Fourier拟谱格式
1.
Multi-symplectic fourier pseudospectral scheme for nonlinear "good" Boussinesq equation;
非线性“good”Boussinesq方程的多辛Fourier拟谱格式
6) differencing scheme
差分格式
1.
Different differencing schemes (Upwind, Hybrid, and Hquick) were used to predict vehicle exhausted pollutant dispersion in an urban street canyon.
选用不同的差分格式(Upwind, Hybrid, Hquick)对城市街道峡谷内部汽车污染物排放浓度进行了预测,并于风洞实验结果对比。
2.
On the basis of analysis, the flow field is simulated with different turbulent models and differencing schemes on refined grid, and the result is compared with that of wind tunnel test.
分析了影响模拟计算精度的原因,在此基础上应用优化网格和不同的湍流模型及差分格式,比较了计算结果并与风洞试验结果相验证。
3.
In this paper,a high accuracy differencing scheme for solving the paramelerequation is given,using the method of undetermined ate coefficients.
本文给出了一个解抛物型方程的恒稳定的差分格式,计算量较小,截断误差达0(ΔtΔx~2+Δx~4+Δt~4)。
补充资料:差分格式
差分格式
difference scheme
。尽of)中考虑.利用高速计算机解常微分方程和偏微分方程的典型差分格式的有效数值方法已经发展起来. 下面给出差分格式的一个简单例子.假设给定微分方程 。I,‘:卜a ox、u‘x卜汀‘x).) a(x))0 .0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条