1) minimum-weight steel
最小用钢量
2) least action
最小作用量
1.
The principle of least action with variables was used to solve the forced vibration of the rectangular plate with three clamped and the other free under concentrated load,and the corresponding stable solution was obtained.
应用混合变量最小作用量原理求解了三边固定一边自由矩形板在任意集中谐载作用下的受迫振动 问题,建立了求解这类问题受迫振动稳态解的新方法。
2.
In this paper, with the principle of least action with variables to solve the problems of forced vibration of the rectangular plate with three clamped and the other free with uniform load with the action of uniform load, and the stable solution can be worked out.
在本文中,应用混合变量最小作用量原理求解了三边固定一边自由弯曲矩形板在均匀谐载作用下的受迫振动问题,得到其受迫振动的稳态解。
3) minimum intake
最小用样量
4) minimum water-consumption model
用水量最小
5) Minimum toxicity dose
最小毒作用剂量
6) principle of least action
最小作用量原理
1.
The reflection coefficient and refraction coefficient are also given; the analysis shows the versatility of the principle of least action,Snell s law and Fresnell s law in the research on the left-handed material,and the negative refraction effect is explained.
研究了电磁波在左右手介质界面折射与反射的特性,给出了折射系数和反射系数,从另外一个方面探讨了最小作用量原理在左手材料中的适用性;从电动力学和最小作用量原理证明了Snell定律,验证了Snell定律在左手材料中的适用性,并且得到Fresnell公式在左右手材料中的一致性。
2.
In this paper,we psesented that the principle of least action or Hamilton principle is ample and necessary condition of Lagrangian equation,pointed out the properties of Lagrangian function briefly,and gave the generalization and application of Lagrangian function in physics.
本文论述了力学最小作用量原理或哈密顿原理是拉格朗日方程的充分必要条件,简述了拉格朗日函数的性质,指出最小作用量原理及拉格朗日函数在物理学中的推广及应用。
3.
This paper discusses the mechanical properties of noncontemporaneous variation,from which the Hamilton principle and the principle of least action are derived.
本文讨论了非等时变分的力学性质,并由此导出Hamilton原理和最小作用量原理。
补充资料:最小充分统计量
最小充分统计量
minimal sufficient statistic
最小充分统计且【而目如川别西d曰t幽垃由c;MllH皿M幼‘-”a,及ocTaTo,Ha,cTaT“cTll‘a」 分布族少二{p,,0〔。}的充分统计,(s刊币cientsta山tic)戈对于任何其他充分统计量Y,有X=g(Y),其中g为某一可测函数.充分统计量是最小的,当且仅当它所诱导的充分6代数最小,即它包含在任何其他充分叮代数中. 亦使用少最小充分统计量(夕一m山面阴15刊币cientstatistic)(或‘作攀(‘一细bra))的概念·充分“代数几(及与其相对应的统计量)称为少最小的,如果它包含在关于分布族夕的任何充分。代数男的完全化歹之中.如果族尹受口有限测度拜控制,则由密度族 {,。(。)一华(。);。。。} d召“一,,。~,产生的『代数几是充分的和少最小的. 指数族 夕。(。)二c(。)exp{艺Q,(。)不(。)} )的典型统计量T=(T,,…,兀),是最小充分统计量的一般例子.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条