1) Gauss-Jacobi quadrature
高斯-雅可比型积分
2) Gauss-Jacobi identity
高斯-雅可比恒等式
3) Gaussian integral
高斯型积分
1.
Based on the characterise of orthogonal polynomial and algebraic precision, the coefficients A k of Gaussian integral formula and calculation were discussed in detail, the calculation formulae of coefficients and their proof were given.
数值积分中的高斯型积分适用范围广,代数精度高。
4) jacobi canonical form
雅可比标准型
6) Gauss quadrature
高斯积分
1.
Gauss quadrature is used widely in many fields such as the engineering numerical computation,X-ray diffraction profile analysis,spectroscopy,and so on.
在工程数值计算、X射线衍射线形分析、光谱学等领域常使用高斯数值积分,高斯积分的节点及权重因子是数值积分的必须数据。
2.
Gauss quadrature and minimum residual displacement method (with iteration) are used in the analysis.
采用高斯积分,利用最小残余位移法进行迭代计算。
补充资料:高斯型谱带
分子式:
CAS号:
性质:用高斯函数描写的一类带型,可写成:F(ν-ν0)=(a/)exp[-a2(v-v0)2]式中a-1与带宽成比例,v0为谱带峰高极大处的频率
CAS号:
性质:用高斯函数描写的一类带型,可写成:F(ν-ν0)=(a/)exp[-a2(v-v0)2]式中a-1与带宽成比例,v0为谱带峰高极大处的频率
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条