1) inferior positive define complex matrices
亚正定复矩阵
1.
A series of "if and only if" condition was given for inferior positive define complex matrices product (Kronecker product and Hadamard product ).
本文给出亚正定复矩阵的乘积、Kronecker积与Hadamard积是亚正定的一系列充分必要条件。
2) complex metapositive sub-definite matrix
复次亚正定矩阵
1.
The sub-definite of matrix generalize Fischer s results on a positive definite matrix to the complex metapositive sub-definite matrix,to get a new conlusion.
笔者讨论了复次亚正定矩阵的一些性质及行列式不等式,解决A,A n2的上界、下界问题,进一步研究了分块矩阵的次正定性,将Fischer关于正定矩阵的结果推广到复次亚正定矩阵上,从而得到新的结论;利用A A次正定性,推导出Khatri-Rao乘积的次正定性。
3) complex metapositive definite matrix
复亚正定矩阵
1.
On several inequalities of complex metapositive definite matrix;
关于复亚正定矩阵的几个不等式
2.
The properties of metapositive definite of complex normal matrices are discussed,and a series of necessary and sufficient conditions under which of the product two complex matrices will be a complex metapositive definite matrix is given,and some new results are gained.
研究了复正规矩阵的亚正定性,给出了复矩阵之积为复亚正定矩阵的一系列充要条件,获得了一些新的结果;改进并推广了Ky Fan Taussky定理、Fejer定理等。
4) complex metapositive semidefinite matrix
复亚半正定矩阵
1.
The concept of complex metapositive semidefinite matrix is given, its properties and determinant theories are discussed, and then the Schur theorem, Hua Luo-geng theorem, Minkowski inequality, Protruding property inequality and Ostrowski-Taussky inequality of Hermite matrices are generalized to more extensive compound matrix genus.
给出了复亚半正定矩阵的概念,研究了它的基本性质及行列式理论,将Hermite阵的Schur定理华罗庚定理Minkowski不等式凸性不等式Ostrowski-Taussky不等式推广到了较广泛的复矩阵类,扩大了Minkowski不等式的指数范围,削弱了华罗庚不等式的条件。
5) metapositive definite matrix
亚正定矩阵
1.
In this paper,Hadamard s inequality of metapositive definite matrix is studied,generalized Hadamard s inequality and Hadamard s anti-inequality of locally metapositive definite matrix are obtened,and the known conclusions are improved.
研究了亚正定矩阵的广义Hadamard不等式,得到了局部亚正定矩阵的广义Hadamard不等式和反向Hadamard不等式,改进了现有结论。
2.
Based on the relations between the eigenvalues of R(E) and S(E),the sufficient conditions for λ1E1+λ2E2 and λ1E1+λ2E2+λ3E3 to be metapositive definite matrix is presented.
研究了幂等矩阵E的性质,利用E的实对称分支R(E)与反对称分支S(E)的特征值之间的关系给出了λ1E1+λ2E2和λ1E1+λ2E2+λ3E3为亚正定矩阵的充分条件。
3.
we introduce the concept of the metapositive definite matrix over the stronger p division ring and give some basic properties,then discuss properties of block matrixes,Kronecker product and Hadamard product of these matrixes.
在加强P除环上引入了亚正定矩阵的概念 ,讨论了分块矩阵 ,Kronecker积与Hadamard积的亚正定。
6) subpositive definite matrix
亚正定矩阵
1.
This paper gives some properties and equivalence conditions about subpositive definite matrix,then them were proved.
文章给出了亚正定矩阵的一些性质、等价命题及其证明。
补充资料:正定矩阵
设m是n阶实系数对称矩阵, 如果对任何非零向量
x=(x_1,...x_n) 都有 xmx^t>0,就称m正定。
正定矩阵在相似变换下可化为标准型, 即单位矩阵。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条