1) Fully-controlled bridge type interrupted current
全控桥续流
2) full-control bridge rectifying circuit
全控整流桥
1.
By utilizing the technique of floating potential and photoelectric isolator, the method of obtaining the reference potential of the common-anode thyristor in the three-phaSe full-control bridge rectifying circuit is proposed and the system work is stable.
依据浮动电位与光电隔离技术,提出了解决三相全控桥式整流电路共阳晶闸管的触发脉冲信号产生电路参考电位,选取以及稳定其工作的一种方案,给出了应用于全控整流桥的触发系统电原理图。
3) six-pulse bridge converter
三相全控整流桥
1.
This paper analyses the relationship between the exciting oscillating frequency and thefundame ntal frequency ir the aIternating component of the rectified voltage if the firing delay angle(a)of a six-pulse bridge converter varies with sinusoidal form,the converter is used as a stimulator tocarry out the field testing of inherent oscillating frequency of a large T-G shaft.
本文就汽轮发电机组轴系固有扭频与振型实测用变频励磁激振激发源─—三相全控整流桥触发角α按正弦规律变化时,整流电压对应交变分量中基波频率与幅值的确定及其同激振频率之关系进行了分析与研究。
4) three-phase all controls bridge rectification
三相全控桥整流
5) three-phase bridge type full-control rectifying circuit
三相桥式全控整流电路
1.
This article introduces the application of MATLAB/Simulink software s hierarchic modeling and simulation function in rectifier circuit teaching,and illustrates three-phase bridge type full-control rectifying circuit s simulation and analysis.
通过仿真软件MATLAB/Simulink分层建模、仿真功能在整流电路教学中的应用,并以三相桥式全控整流电路为例,对它们进行了仿真和分析,将书本和电子媒体有机结合,不仅保留了传统教学的优势,而且通过色彩信息和动态交互的仿真波形分析,节约课时,并加深了学生对整流电路基本概念的理解。
6) three-phash bridge trisistor rectifier
三相全控桥式整流器
补充资料:全控型逆变电路
由具有自关断能力的全控型器件组成的逆变电路。全控型器件具有自关断能力,其通断均可由控制极控制。
全控型逆变电路具有以下3个特点。
①主电路简化:由于器件具有自关断能力,因而不再需要附加换流电路,这种换流电路对应用于非容性负载的半控型逆变电路是必不可少的,主电路比半控型电路简单。图1是由不同器件组成的电压型三相逆变电路。由逆阻型门极可关断晶闸管 (RBGTO)组成的电路显然比采用逆阻晶闸管的电路简单。
随着大功率器件集成度的提高,由逆导型门极可关断晶闸管(RCGTO)组成的电路(图1c)显然就最为简单,因为RCGTO是将RBGTO及反并联二极管D集成在一个心片的双向开关。
由于主电路的简化,逆变电路的可靠性提高,体积重量和成本都有所下降。
②工作频率提高:图2是各种全控型器件的频率-功耗特性。 由于它们的工作频带在不同范围内高于半控型器件,因而容许逆变电路工作于更高频率,从而电路中的储能元件(如电感、电容等)的数值降低,电路的体积重量和成本降低,同时逆变输出端的谐波含量和噪声也将随工作频率的提高而下降。
③装置容量较低:全控型器件的开关容量尚低于半控型,因而全控型逆变电路的容量在不同程度上低于半控型逆变电路(图3),从而形成在不同场合不同要求下相互补充的局面。但从长远看,随着技术的发展,全控型器件的开关容量将逐步增大,从而逐步取代半控型逆变电路。
全控型逆变电路具有以下3个特点。
①主电路简化:由于器件具有自关断能力,因而不再需要附加换流电路,这种换流电路对应用于非容性负载的半控型逆变电路是必不可少的,主电路比半控型电路简单。图1是由不同器件组成的电压型三相逆变电路。由逆阻型门极可关断晶闸管 (RBGTO)组成的电路显然比采用逆阻晶闸管的电路简单。
随着大功率器件集成度的提高,由逆导型门极可关断晶闸管(RCGTO)组成的电路(图1c)显然就最为简单,因为RCGTO是将RBGTO及反并联二极管D集成在一个心片的双向开关。
由于主电路的简化,逆变电路的可靠性提高,体积重量和成本都有所下降。
②工作频率提高:图2是各种全控型器件的频率-功耗特性。 由于它们的工作频带在不同范围内高于半控型器件,因而容许逆变电路工作于更高频率,从而电路中的储能元件(如电感、电容等)的数值降低,电路的体积重量和成本降低,同时逆变输出端的谐波含量和噪声也将随工作频率的提高而下降。
③装置容量较低:全控型器件的开关容量尚低于半控型,因而全控型逆变电路的容量在不同程度上低于半控型逆变电路(图3),从而形成在不同场合不同要求下相互补充的局面。但从长远看,随着技术的发展,全控型器件的开关容量将逐步增大,从而逐步取代半控型逆变电路。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条