1) K-graceful labelling
K-优美标号
2) k-graceful labeling
k优美标号
3) graceful label
优美标号
1.
Research on the graceful label of unconnected union graphs
非连通并图的优美标号研究
2.
The paper presents a necessary and sufficient conditions for n-cycles as a graceful graph and also proposes the graceful labels to C 4k ,C 4k-1 .
本文得到了圈Cn为优美图的充要条件,并给出了圈C4k,C4k-1的优美标号。
3.
Let L be a vertex label of simple graph G,L is said to be a graceful label of G if L satisfies both the following:(1) L is an injective mapping from V(G) to{0,1,2,…,|E|};(2) the function L′ obtained by setting L′=(e)=|L(u)-L(v)|,where e=uv is an objective function from E(G) to {0,1,2,…,|E|}.
设L为简单无向图G的一个顶点标号,L称为图G的优美标号,若L满足以下两条:(1)L为G的顶点集V到{0,1,2,…,|E|}的一个单射;(2)由L(′e)=|L(u)-L(v)|(其中e=uv)决定的边标号L′是G的边集E到{1,2,…,|E|}的一个双射。
4) graceful symbol
优美标号
1.
Then the graceful and interlock property of graph C4k U Pn which is connected by circle C4k and path Pn are proved, and the graceful symbol of graph C4k U Pn are given.
证明了由圈C4k与路Pn粘接而成的图C4k∪Pn是优美图,也是交错图,并给出了图C4k∪Pn的优美标号。
2.
The graceful symbol of R(4,1×n 1,n 2 ) is also given out.
并给出了R( 4,1× 4 ,4 )的优美标号 。
5) graceful labeling
优美标号
1.
In addition, and graceful labelings of C 4k ∪C 4k ∪C 8k-1 ,C 4(3t+1) ∪C 4(3t+1) ∪C 4(2t+1) and C 4(3t-1) ∪C 4(3t-1) ∪C 8t-1 are given also.
给出了其为优美图的必要条件,同时给出了C4k ∪C4k ∪C8k-1 ,C4(3t+1) ∪C4(3t+1) ∪C4(2t+1) 以及C4(3t+1) ∪C4(3t-1) ∪C8t-1 的优美标号。
2.
In this paper,we defined "m-foot"chain graphs, and discussed their gracefulness,obtaining the results that six kinds of "m-foot"chain graphs are k-graceful bigraphs,and we also gave their graceful labelings.
定义了"m-脚"链图(即在P2×Pn的m个顶点各粘接一条悬挂边),讨论了它的优美性,得到了6种情形下的"m-脚"链图是k-优美的二分图,并给出了相应的优美标号。
3.
The graceful labelings are given when t=0,1,2,and their gracefulness are proved.
讨论了形如Pm∪P2m+t的两条路不交并图的优美性,用构造性的方法给出了当t=0,1,2时的优美标号,并证明它们是优美的。
6) graceful labelling
优美标号
1.
We give the graceful labelling algorithm of the graphs Cn and 1Cn,while n are equal 4k and 4k+3,then we prove that they all are graceful graph,etc.
本文研究了圈Cn与图C(k1,k2,…,kn)的优美性,给出图Cn与1Cn在n=4k与n=4k+3时的优美标号算法,从而证明了它们都是优美图等结论。
补充资料:优美
①美好;美妙:姿态优美|风景优美。②亦称“秀美”。美学范畴之一。与“崇高”相对。指事物呈现出婉约柔和、纤巧雅致的特性,以此唤起人们亲切、愉悦、平和、自由的审美感受。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条