说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 叠层闭口悬臂圆柱壳
1)  laminated closed cantilever cylindrical shell
叠层闭口悬臂圆柱壳
1.
An exact solution is presented for the axially symmetric problem of thick laminated closed cantilever cylindrical shell.
给出叠层闭口悬臂圆柱壳轴对称问题的精确解。
2)  laminated continuous closed cylindrical shell
叠层连续闭口圆柱壳
3)  thick laminated continuous closed cylindrical shell
叠层连续闭口厚圆柱壳
4)  laminated cylinder
叠层闭口柱壳
1.
Based on the fundamental equations of thermal elasticity, the state equation for a orthotropic laminated cylinder with clamped edges under thermal loads is established by introducing state space theory.
从热弹性力学的基本方程出发,引入状态空间理论,建立了具有固支边的正交异性叠层闭口柱壳在温度荷载作用下的状态方程,并给出适用于任意厚跨比的解析解。
5)  laminated cylindrical shell
叠层圆柱壳
1.
State variable method for the analysis of the dynamic response of laminated cylindrical shells with arbitrary thickness;
任意厚度叠层圆柱壳动力响应的状态变量法
6)  laminated con tinuous open cylindrical shell
叠层连续开口圆柱壳
补充资料:纵向磁场中的单层空心超导圆柱体
纵向磁场中的单层空心超导圆柱体

(singlehollowsuperconductingcylinder(SSC)inalongitudinalmagneticfield)

平行于柱轴(纵向)磁场H0中的单层空心超导长圆柱体(SSC)是复连通超导体。设柱体内外半径分别为r1,r2(r1<r<r2),厚度d=r2-r1,ζ=r/δ,Δ=d/δ,δ=δ0/ψ,δ0,ψ分别为大样品弱场穿透深度和有序参量。由GL理论,徐龙道和Zharkov研究了一系列物性,其中对厚壁样品,磁场难于透入中空部分而只存在原有的量子化冻结磁通。对`\zeta_1\gt\gt1`和$\Delta\lt\lt1$的薄壁样品,腔内磁场H1和样品磁矩M分别为:

$H_1=\frac{H_0 (n\phi_0//\pir_1^2)\zeta_1\Delta//2}{1 (\zeta_1\Delta//2)}$

$M=-\frac{r_2^2\zeta_1\Delta(H_0-n\phi_0//\pir_1^2)}{8[1 (\zeta_1\Delta//2)]}$

这里n为磁通量子数,φ0=h/2e=2.07×10-15Wb。是磁通量子,h和e分别为普朗克常数和电子电荷量。若原先空腔中无冻结磁通(n=0),则腔中磁场是外场H0穿透进入。若$\zeta_1\Delta\lt\lt1$,则H1≈H0,磁场可几乎全穿透到空腔。薄壁不起屏蔽磁场的作用。但若$\zeta_1\Delta\gt\gt1$,则H1≈1,所以虽然$d\lt\lt\delta$,但外场仍难于进入空腔而被壁所屏蔽,称ζ1Δ/2为纵向外场中单层空心长圆柱体的屏蔽因子。对M也可作同样分析。与实心超导小样品类似(见“超导薄膜”),可用与ψ(对坐标的平均),H0,n,温度T和样品尺寸l有关的超导-正常两相吉布斯自由能密度之差$fr{F}(\psi,p)$用GL理论来进行研究分析相变行为及其他一系列物性,如各种临界磁场,临界尺寸等等。这里H0,n,T和l在$fr{F}$宗量中统一记写为p来表示。SSC系统的一、二级相变见图1。随着H0或T的增加,图线由1逐渐上升到4和5。图1(a)的1,2,3三曲线在ψ>0上存在$fr{F}<0$的极小值,超导态是稳态,在3与4曲线之间可有$fr{F}>0$和ψ>0的极小值(图中未画出),则超导态是亚稳的过热(sh)态。曲线4上有$fr{F}>0$,ψ>0的拐点,是超导态的过热边界。稍上,样品即跳跃到ψ=0的正常态或量子跃迁到不同n值的ψ>0的超导态。再往上,如图线5,$fr{F}$的最小值在ψ=0,样品完全处于正常态。相反过程,减小H0或T,图线由5的处于ψ=0的稳定正常态,并维持ψ=0到图线4,在图线3上,极大值在$fr{F}>0$和极小值在$fr{F}<0$与ψ>0处,此时ψ=0的正常态是亚稳的过冷(SC)态。继续减小H0或T,在极大值开始消失只存在极小值时,ψ=0的正常态是过冷边界。再往下,样品处于完全的超导态。由于有过热和过冷滞后现象,相变属一级相变。图1(b)则无滞后现象,相变属二级相变。

Arutunian和Zharkov在此基础上又细致地作了进深的一系列研究,例如所给出的图2(a),这里取T=0K的相干长度ξ0=1×10-7m,GL参量K=0.2,r1=6×10-7m,r2=8×10-7m,图中t=T/Tc,φa1=πr12H0/φ0,φtc表示在图1(a)上拐点所对应的量,用箭头所指表示,实线是过冷边界φsc,虚线是过热边界φsh,平方规律的包络线类同于图2(b)的块样品的热力学临界磁场Hc(T)的相图曲线,但图2(a)体现了外场穿透薄壁而形成磁通量子的跃入空腔的过程和滞后现象。又例如对二级相变的比热随外场和量子数n跃迁振荡情形见图3。图中$bar{c}=\Deltac//c_0$,Δc=cs-cn,c0=μ0Hcn2(0)/Tc,μ0为真空磁导率,Hcn(0)是T=0K时对应于n的热力学临界场,cs和cn分别是超导态和正常态的比热。图3(a)(实线)和(b)(虚线)分别是对应清洁和脏超导体薄壁样品的。在n超导态磁通跃迁进入n±1超导态过程中经历有正常态时,则进入n±1超导态称超导态的重入,或一般地进入正常态后又进入超导态也称超导态的重入。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条