说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 可控算子矩阵
1)  control-operator matrix
可控算子矩阵
2)  operator matrices
算子矩阵
3)  operator matrix
算子矩阵
1.
Program diagnosis method based on operator matrix model;
基于算子矩阵模型的程序诊断方法
2.
The necessary and sufficient conditions are obtained for the existence of the rational solutions of differential equations by constructing the differential operator and establishing the operator matrixes,and the corresponding results collected in Ref.
本文主要利用在文[4]中得到的一个定理,通过构造微分方程的线性算子的方法,得到了一个关于微分方程的算子矩阵,从这个算子矩阵向量的线性相关性得到了微分方程存在有理式解的充分必要条件,并举例给出求有理式解的具体方法。
3.
By using the block operator matrix,when the range of A is closed,the sufficient and necessary conditions for the existence of solutions and positive operator solutions of the operator equation AXA*=B and the representation of the solutions are established.
文中利用算子分块的技巧,在算子A值域闭的情况下讨论了算子方程AXA*=B解及其正解存在的充要条件并用算子矩阵的形式给出了它们的具体表示。
4)  matrix operator
矩阵算子
1.
Firstly,the region patterns were distinguished according to the set of matrix operator.
该方法首先根据设定的矩阵算子检测出图像中的区域块,然后按照一定的规则判断区域的边界,对区域进行填充,最后得到含有线条和区域边界的图像轮廓。
5)  controllability matrix
可控性矩阵
1.
The criterion is that the order of controllability matrix equal to the number of rows or columns.
系统状态完全可控的充要条件为系统的可控性矩阵为满秩。
2.
Invertible conditions for a controllability matrix and a method to find its inverse are presented.
讨论了一类单输入线性定常系统和多输入线性定常系统完全可控的多项式判据,通过多项式组的互质性即可判断线性系统的可控性,同时讨论了可控性矩阵可逆的条件及逆阵的求法。
6)  block operator matrices
块算子矩阵
1.
Let Γ be a block operator matrices with respect to Hilbert space H 1H 2, M be a closed invariant subspace of Γ.
设Γ关于Hilbert空间H1 H2 具有块算子矩阵表示 ,M是Γ的闭不变子空间。
2.
At the same time, we give some sufficient conditions of containing relations of the quadratic numerical range of the different block operator matrices of the weighed shift matrix, and draw the figures of quadratic numerical range of these block operator matrices by Matlab program to explain such containing relations.
设作用在Hilbert空间H=H_1(?)H_2上的块算子矩阵(?),块算子矩阵r的二次数值值域定义为在本文中证明了当Γ是紧算子矩阵且W~2(Γ)等于Γ的谱σ(Γ)的充要条件是存在λ,μ∈σ(Γ)使得A=λI或者D=μI且B=0或者C=0,并且给出例子说明存在非紧的分块算子矩阵Γ满足W~2(Γ)=σ(Γ),但是A和D不是对角算子。
补充资料:凹算子与凸算子


凹算子与凸算子
concave and convex operators

凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),00. 类似地,一个算子A称为今单(~ex)(更确切地,在K上“。凸的),如果条件l)与2)满足,但不等式(*)用反向不等号代替,并且函数粉(x,t)<0. 一个典型的例子是yP‘KOH积分算子 通rx‘t、1二f天(t.:,x(s))山, G它的凹性与凸性分别由纯量函数介(t,s,。)关于变量u的凹性与凸性所确定.一个算子的凹性意味着它仅仅包含“弱”的非线性—随着锥中的元素的范数增加,算子的值“慢慢地”增加.一般说来,一个算子的凸性意味着,它包含“强”的非线性.由于这个理由,包含凹算子的方程在许多方面不同于包含凸算子的方程;前者的性质类似于相应的纯量方程,而不同于后者,后者关于正解的唯一性定理是不成立的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条