1) discrete time interconnected systems
耦合离散大系统
2) large-scale discrete systems
离散大系统
1.
In this paper,the stability of linearly time-invariant large-scale discrete systems with strong coupling in a single direction among subsystems is considered.
该文研究子系统间具有强耦合的线性离散大系统的稳定性。
3) discrete large scale systems
离散大系统
1.
Partial stability of discrete large scale systems;
离散大系统的部分稳定性
2.
The existence of periodic of the discrete large scale systems was studied by using Lyapunov s method, the several new sufficient conditions are obtained for the existence of a unique asymptotically stable m periodic solution namely harmonic oscillation in the discrete large scale systems.
利用 L yapunov方法研究离散大系统周期解的存在性 ,给出 m-周期解存在、唯一稳定即平稳振荡存在的几个新判
4) loosely coupled system
松散耦合系统
1.
Through the introduction of loosely coupled systems theory, this article systemically analyzes the coupling elements, configuration, glue, intensity, motivation and policies in China’s high-tech industrial park on the level of sub-system of "biomes" in original and second entrepreneurship period.
通过引入松散耦合系统理论,本文设计了其基本分析框架。
5) Coupled dispersive system
耦合色散系统
补充资料:离散时间周期序列的离散傅里叶级数表示
(1)
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条