1) primitive word
本原字
1.
The concept of G-commutative primitive word is introduced, in which G is a permutation group or even a subset of symmetric group Sn.
引进G-交换本原字的概念,这里G是一个置换群,甚至是全对称群Sn的一个子集合,给出判断并且构作一个本原字是G-交换本原字的方法。
2.
It is then proved that every dense relatively regular language contains primitive words,and some relation between the dense relatively regular languages and maximal codes is given.
继而证明了稠密相对正则语言都含有本原字。
2) primitive font
本原字体
3) native character set
本原字符集
4) The study on the characters of the original incomplete Yu Pian
《原本玉篇文字研究》
1.
Discussion on some questions in The study on the characters of the original incomplete Yu Pian;
《原本玉篇文字研究》若干问题商兑
5) original form of a character
本字
1.
A Shallow Discussion on Using "Duruo" in Shuo Wen to Search for the Original Form of a Character;
用《说文》中的“读若”求本字浅探
6) Original character
本字
1.
By reviewing the morpheme and phoneme in the comparison between different dialects and studying of the documents,it is proved that the original character of [tso?~5]is zhuo(捉) and is not zhuo(祝土),what is beneficial to the complilation of dialectal or large Chinese dictionary and the collations of ancient books.
利用方言比较的方法,通过对语音沿革、构词语素的研究以及相关文献资料的溯源与考察,可以证明词中[tso?~5]的本字应该是“捉”而非“(祝土)”,这一结论对方言词典和大型语文辞书的编纂以及古籍校勘等都具有一定的参考价值。
2.
The traditional view holds that Zao(蚤)is a substitute for an original character Zao(早).
传统的观点认为,“蚤”是本有其字的假借,它的本字“早”产生于“蚤”之前。
3.
By comparing with the Min and Gan Dialects and by textual research into the documental records,this paper concludes the original characters be"罗虫奇".
本文联系闽语、赣语等,通过书面文献考证其本字应为“罗虫奇”,并进而指出其为客方言中的古音化石。
补充资料:本原环
本原环
primitive ring
本原环[画‘。ve吨;np“M““,oeKO“““01,有夺厚环(对乡止prilnjtive nng) 带有忠实右不可约模(计托沮uciblem闭ule)的结合环(见结合环与结合代数(associati祀门列邓anda】ge-b“‘)).类似地(用左不可约模)可以定义左本原环.右和左本原环类不相重.每个交换本原环是一个域(反ld).每个(在.如周触阴,根(Jaco比on左己i以)意义下的)半单环是本原环的次直积单环(simPle朋g)或者是本原环,或者是根环.有非零极小右理想的本原环可由稠密性定理刻画.满足右理想极小条件的本原环(即Art云1本原环)是单环. 环R是本原的,当且仅当它有一个极大模右理想I(见模理想(med川ar id已习)),使得I不包含R的任何非零双侧理想.这一性质可作为在非结合环类中的本原环的定义.【补注】Jaco忱on根意义下的半单环现在被称作半本原环(~~p山元tjVe户刀罗).带有多项式恒等式的本原环是有限维中心单代数.有极小单侧理想的本原环有一个基座(socle),可被完全刻画【All.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条