1) pinnnar slot antenna
平面裂缝阵列天线
1.
This paper may be helpful to the structure design of pinnnar slot antenna of airborne radar.
针对机载雷达平面裂缝阵列天线重量轻、刚度大的要求,设计了一次焊接成型的整体结构天线。
2) planar array antenna
平面阵列天线
1.
,FEM analysis and assembly method of a planar array antenna in radar of bigger size and better mobility.
本文介绍了一种较大尺寸的平面阵列天线的机动型雷达的结构设计、有限元分析和总成方法。
2.
This paper mainly described L-band planar array antenna, which includes the design of the element of antenna array, the design of feeder system, the synthesis of antenna array pattern and the effects of the aperture amplitude and the phase error on the antenna far-field pattern.
本文主要设计了L波段平面阵列天线,它涵盖了阵列单元的设计、馈电系统的设计、阵列天线波束形成以及幅相误差对阵列天线方向图的影响等。
3.
In this papera,radio frequency identification(RFID) anticollision algorithm was proposed based on an analysis of digital multi-beaming forming algorithm of planar array antenna.
该算法采用平面阵列天线,通过数字多波束形成算法控制加权系数,将三维空间划分为多个波束方向,并同已有基于时分多址(TDMA)算法相结合,实现对在阅读器的识别范围内大量密集分布的标签进行快速准确识别的目的。
3) plane antenna array
平面天线阵列
4) slotted waveguide antenna array
波导裂缝阵列天线
5) slotted antenna array
隙缝天线阵;裂缝天线阵
6) planar microstrip array antenna
平面阵列微带天线
补充资料:阵列天线
由许多相同的单个天线(如对称天线)按一定规律排列组成的天线系统,也称天线阵。单个天线的方向图不易控制,增益不高,其他参量往往也不能满足使用要求,所以在某些应用场合(例如雷达天线等)需要使用阵列天线。阵列天线的各组成天线单元应有一定的排列规律和馈电方式,以获得所要求的功能。
分类 按单元排列可分为线阵和面阵。最常用的线阵是各单元的中心依次等距排列在一直线上的直线阵。线阵的各单元也有不等距排列的,各单元中心也可以不排列在一直线上,例如排列在圆周上。多个直线阵在某一平面上按一定间隔排列就构成平面阵,若各单元的中心排列在球面上就构成球面阵。
按辐射图形的指向可分为侧射天线阵、端射天线阵和既非侧射又非端射的天线阵。侧射天线阵是最大辐射方向指向阵轴或阵面垂直方向的天线阵。端射天线阵是最大辐射方向指向阵轴方向的天线阵。最大辐射方向指向其他方向的天线阵为既非侧射又非端射的天线阵。
按照功能可分为同相水平天线、频率扫描天线、相控阵天线、多波束天线、信号处理天线、自适应天线等。
工作原理 阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和(矢量和)。由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。
图1为最简单的二元天线阵。把功率P馈给一个天线单元时,在天线最大辐射方向足够远(距离r)的A点产生场强E0,当把同样的功率馈给等幅同相二元天线阵(图1)时,每个天线单元得到一半功率,它们在A点各产生相同的场强,则合成场强为。也就是说,总馈电功率不变,而产生的场强却增大到原来的倍,即天线阵的增益增大,与一个单元相比,辐射也较集中。上述结论是在认为两天线单元间相互没有影响时得出的,这只有当两单元相距很远时才能达到。天线阵的单元数越多,天线阵的增益就可能越高,当然天线阵的尺寸也就越大。
方向图相乘原理 对于单元数很多的天线阵,用解析方法计算阵的总方向图相当繁杂。假如一个多元天线阵能分解为几个相同的子阵,则可利用方向图相乘原理比较简单地求出天线阵的总方向图。
一个可分解的多元天线阵的方向图,等于子阵的方向图乘上以子阵为单元的天线阵的方向图。这就是方向图相乘原理。一个复杂的天线阵可考虑多次分解,即先分解成大的子阵,这些子阵再分解为较小的子阵,直至得到单元数很少的简单子阵为止,然后再利用方向图相乘原理求得阵的总方向图。这种情况适应于单元是无方向性的条件,当单元以相同的取向排列并自身具有非均匀辐射的方向图时,则天线阵的总方向图应等于单元的方向图乘以阵的方向图。
图2上部的四元天线阵的总方向图可用方向图相乘原理来求出。阵中各单元为等幅同相激励的半波天线。这样一个天线阵可以分为两个相同的子阵,单元1和2为一个子阵,这个子阵可以看成一个整体,即可用一等效单元来代替,这个等效单元处在左边的"×"点上,单元3和4为另一子阵,这个子阵也可用一等效单元来代替,这个等效单元处在右边的"×"点上。这两个等效单元又构成一个天线阵。于是利用方向图相乘原理就可以求得这天线阵的总方向图 (图2的下部)。其中等号左边第一个是单元的方向图,第二个是子阵(即等效单元)的方向图,第三个是子阵的阵的方向图。等号右边是这三个方向图的乘积,即阵的总方向图。其他平面内的总方向图可仿照上述步骤求得。这个方法可以推广到求更复杂天线阵的总方向图,只要这个复杂天线阵能分解为几个相同的子阵即可。
分类 按单元排列可分为线阵和面阵。最常用的线阵是各单元的中心依次等距排列在一直线上的直线阵。线阵的各单元也有不等距排列的,各单元中心也可以不排列在一直线上,例如排列在圆周上。多个直线阵在某一平面上按一定间隔排列就构成平面阵,若各单元的中心排列在球面上就构成球面阵。
按辐射图形的指向可分为侧射天线阵、端射天线阵和既非侧射又非端射的天线阵。侧射天线阵是最大辐射方向指向阵轴或阵面垂直方向的天线阵。端射天线阵是最大辐射方向指向阵轴方向的天线阵。最大辐射方向指向其他方向的天线阵为既非侧射又非端射的天线阵。
按照功能可分为同相水平天线、频率扫描天线、相控阵天线、多波束天线、信号处理天线、自适应天线等。
工作原理 阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和(矢量和)。由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。
图1为最简单的二元天线阵。把功率P馈给一个天线单元时,在天线最大辐射方向足够远(距离r)的A点产生场强E0,当把同样的功率馈给等幅同相二元天线阵(图1)时,每个天线单元得到一半功率,它们在A点各产生相同的场强,则合成场强为。也就是说,总馈电功率不变,而产生的场强却增大到原来的倍,即天线阵的增益增大,与一个单元相比,辐射也较集中。上述结论是在认为两天线单元间相互没有影响时得出的,这只有当两单元相距很远时才能达到。天线阵的单元数越多,天线阵的增益就可能越高,当然天线阵的尺寸也就越大。
方向图相乘原理 对于单元数很多的天线阵,用解析方法计算阵的总方向图相当繁杂。假如一个多元天线阵能分解为几个相同的子阵,则可利用方向图相乘原理比较简单地求出天线阵的总方向图。
一个可分解的多元天线阵的方向图,等于子阵的方向图乘上以子阵为单元的天线阵的方向图。这就是方向图相乘原理。一个复杂的天线阵可考虑多次分解,即先分解成大的子阵,这些子阵再分解为较小的子阵,直至得到单元数很少的简单子阵为止,然后再利用方向图相乘原理求得阵的总方向图。这种情况适应于单元是无方向性的条件,当单元以相同的取向排列并自身具有非均匀辐射的方向图时,则天线阵的总方向图应等于单元的方向图乘以阵的方向图。
图2上部的四元天线阵的总方向图可用方向图相乘原理来求出。阵中各单元为等幅同相激励的半波天线。这样一个天线阵可以分为两个相同的子阵,单元1和2为一个子阵,这个子阵可以看成一个整体,即可用一等效单元来代替,这个等效单元处在左边的"×"点上,单元3和4为另一子阵,这个子阵也可用一等效单元来代替,这个等效单元处在右边的"×"点上。这两个等效单元又构成一个天线阵。于是利用方向图相乘原理就可以求得这天线阵的总方向图 (图2的下部)。其中等号左边第一个是单元的方向图,第二个是子阵(即等效单元)的方向图,第三个是子阵的阵的方向图。等号右边是这三个方向图的乘积,即阵的总方向图。其他平面内的总方向图可仿照上述步骤求得。这个方法可以推广到求更复杂天线阵的总方向图,只要这个复杂天线阵能分解为几个相同的子阵即可。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条