说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 广义状态方程
1)  generialized state equation
广义状态方程
1.
n algorithm of obtaining minimum standard state equation from generialized state equations is discussed in this paper.
本文讨论了从广义状态方程(MX=AX+BU)获得最小维标准状态方程的算法。
2)  generalized characteristic state equation
广义特征状态方程
1.
And then,generalized characteristic state equations are derived and the mathematic models of various combination patterns are set up.
定义了多个机构单元的串、并混联等组合方式及其典型组合单元的数学模型,并以基本组合方式为基础,建立其对应的广义特征状态模型(集),提取了不同组合关系下的广义特征状态方程,从而建立起组合方式数学表达式。
3)  generalized state
广义状态
1.
A dynamic composite systems are constructed based on the similar structures, further, generalized state of each subsystem in the original generalized interconnected systems is reconstructed based on the corresponding measurable output of the composite systems, so a new region of similarity research is presented here.
研究了一类具有相似结构的广义互联系统 ,根据系统的相似结构构造了一个动态组合系统 ,并以组合系统的可测输出为基础来实现广义互联系统中各个子系统的广义状态重构 ,从而提出了相似性研究的新方向 。
4)  generalized equation
广义方程
5)  generalized state solutions
广义状态解
1.
First,the general notion of solvability and generalized state solutions for linear discrete coefficient_vary singular systems are analyzed.
首先分析总结了线性离散变系数奇异系统可解性及其广义状态解的一般概念。
6)  generalized Boussinesq equation
广义Boussinesq方程
1.
Smooth soliton solutions and different kinds of periodic traveling wave solutions for a generalized Boussinesq equation;
广义Boussinesq方程的光滑孤子解和各种周期行波解
2.
In this paper,the qualitative theory of differential equations and the bifurcation method of dynamical systems are used to investigate the existence of the solitary peakon solution to a generalized Boussinesq equation.
利用微分方程定性理论和动力系统分支方法,对一类广义Boussinesq方程的孤立尖波解的存在性进行了研究。
3.
Then an implicit multi-symplectic scheme equivalent to the multi-symplectic Box scheme was constructed to solve the partial differential equations(PDEs) that were derived from the generalized Boussinesq equation.
广义Boussinesq方程作为一类重要的非线性方程有着许多有趣的性质,基于Hamilton空间体系的多辛理论研究了广义Boussinesq方程的数值解法,构造了一种等价于多辛Box格式的新隐式多辛格式,该格式满足多辛守恒律、局部能量守恒律和局部动量守恒律。
补充资料:贝蒂-布里奇曼状态方程
分子式:
CAS号:

性质:描述实际气体系统处于平衡状态时摩尔体积Vm压力P及温度T之间关系的一种经验方程,具有高度准确性。其表达式为:式中R是气体常数;A、B和a、b、c是可由实验测得的常数,对于不,同种类的气体有不同值。  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条