1) viscosity super-and sub-derivative
粘性上、下导数
2) upper(lower) derived function
上(下)导数
3) viscosity derivative
粘性导数
1.
give out the concept of function’s Viscosity Derivative, with which as the base, we’ve discussed a few properties of upper (lower) derived sets of function’s viscosity derivatives, such as the property of function’s differentiable points, etc.
Crandall等人在文 [1]中给出了函数的粘性导数的概念。
4) right-hand upper lower derivative
右上下导数
5) upper (lower) directional derivative
上(下)方向导数
6) viscoelastic fractional derivative
粘弹性分数导数
补充资料:差分格式的粘性
差分格式的粘性
difference.scheme viscosity of a
差分格式的粘性【山晚m瓦犯,刘此“姆v如国‘钾ofa;cxeM·ua,.:..‘1,‘】 刻画差分格式耗散的一种概念(见【l」).差分格式的粘性表示在微分方程的差分方程通近(app侧-mation of ad正re代泊tial闪uatjon byd迁re代泊“equation)时出现什么样的附加的耗散性质(见〔21,〔31).与引用“差分格式粘性”(咙cosity)这一术语的同时,也用“近似粘性”(approxjn坦ti化~ity)这一术语(见【4],【5]).差分格式的粘性是一耗散函数(曲-sipative fiulction)(见【6】).差分格式粘性的结构是由差分函数关于网格参数的Tavlor展式中关于空间变量的最低偶数阶导数的系数形式来确定的(见【7卜【9}).关于空间变量的三阶导数是差分格式耗散的系数(矩阵)(见【101).其微分表示包含差分算子展成关于网格参数的Taylor级数(无穷多项)的一切项(见【9],【ro」).微分近似包含展式的部分项.首次微分近似由原微分算子与展式的第一个非零项组成. 根据原微分方程组的形式以及展式的基本函数的类型,出现不同形式的粘性与耗散矩阵.在气体动力学的数值方法(笋d,扭而“,~对。dn犯th。北of)的研究中,有六种不同形式的粘性矩阵(见【10」). 首次微分逼近的抛物型粘性矩阵的非负性条件被看成差分格式的稳定性条件;在这种情况下出现了适定的问题(忱u.加刘pmb1On)(见[8」).借助于微分逼近这一工具来考虑差分格式粘性的方程能够得到差分格式的分类(见【9」). 差分格式的粘性对每一个确定的差分格式有唯一的定义.为了有效地控制粘性,考虑差分格式的类别是合适的.于是,引人多参数分裂差分格式类(见[ro〕),用变动参数数值的方法,就能够改变具有Na-低一Sto比型,湍流型和其他型的粘性项的值.根据它的参数,粘性可以在满足数学的,程序的以及结构的性质的条件下优化(见!11」).当粘性关于多参数分裂差分格式类的参数的非负性和最小性条件满足时,就得到一族最优格式(最小耗散的和稳定的);而大质点法(h卿一Particle血thed)的差分格式就属于这一族(见【12」). 研究差分格式的粘性,最好去揭示格式粘性矩阵的内在结构(见【川),例如考虑分裂的粘性矩阵,不定常粘度矩阵,平移粘度矩阵,结构粘度矩阵,等等. 在解边值问题时,常引进差分格式粘度的概念以及微分逼近或差分边值条件表现的概念(见【101). 在计算区域的点上以及在边界上或他们的邻域内的非线性差分格式的稳定性的研究中,要用到差分格式的粘性.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条