1) stress difference component
应力差分量
2) differential stress field
差分应力场
3) stress component
应力分量
1.
Matrix solution of coordinate transformation of stress component;
应力分量坐标变换的矩阵解法
2.
The finite element unit calculation of box section at the anchored area of steel cables for actual cable-stayed bridges has been analyzed,with the spatial,solid unit,and draw in the components of stresses in segments of box girders,it indicated the danger zone of all stress components,to provide a reliable basis for the design and construction of actual bridges.
采用空间实体单元对实际的斜拉桥拉索锚区箱梁段进行了有限元计算,绘出了箱梁段中各应力分量,分析了各应力分量的危险区域,为实际桥梁的设计与施工提供了可靠的依据。
3.
It is proved that stress component of skew section about three dimensional stress state is corresponding to shaded parts of three dimensional stress circle,and the method of drawing stress component of three dimensional stress state skew section with graphic method is researched.
证明了三向应力状态斜截面上应力分量与三向应力圆阴影部分相对应,研究了用图解法画出三向应力状态斜截面上应力分量的方法。
4) stress components
应力分量
1.
Expression of the stress components on the intermediate layer of cylindrical thin shells with circular holes under axial compressive loads;
开孔薄壁圆筒在轴向压缩载荷下中间层的应力分量表达式
2.
The stress components in different planes are generally different both in directions and magnitude.
该方程和应力椭球方程共同构成了所有应力分量的描述方程。
5) absorption heat difference stress
吸热量差拉应力
6) stress component method
应力分量法
1.
The selection of a suitable stress method to easily and quickly solve a plane problem in elasticity is expounded through comparing the stress function method with the stress component method.
通过对应力函数法与应力分量法的比较,论述了按应力求解弹性力学平面问题时,如何选择合适的解法,以取得难度小、求解快的效果;并讨论了应力分量法的局限性。
补充资料:柯西应力张量
柯西应力张量
Cauchy's stress tensor
kexi yingli zhangliang柯西应力张t(Cauehy‘5 stress tensor)研究大变形时用现时构形来描述的对称应力张量。在大变形(有限变形)情况下,由于变形前的初始构形和变形后的现时构形(见弹一塑性有限元法)差别较大,这样分别定义在这两个构形上的应力张量就很必要。所谓物体的一个构形是指由连续介质构成的某一物体某瞬间在空间所占的区域。在大变形分析中柯西(Cauchy)应力张量是一种采用欧拉描述法(是以质点的瞬时坐标砂和时间t作为自变量描述)定义在t时刻的现时构形上的应力张量di,,又称欧拉应力张量。取三维空间笛卡儿坐标系,在t时刻的现时构形中截取一个四面体素,其斜面面元为da,法线为二,另外三个面元为da;、da:和da3,与所取坐标面平行。由四面体素的平衡条件得出da上的应力为: 可摊,=外n,这里氏J~‘便是柯西应力张量,它是二阶对称张量。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条