1) (T) fuzzy integral
(T)模糊积分
3) fuzzy integral
模糊积分
1.
Risk assessment system for bidding of construction projects based on Choquet fuzzy integral;
基于Choquet模糊积分的工程投标风险评估方法
2.
Research on Residue Ratio Evaluation of Equipment Based on Fuzzy Integral;
基于模糊积分的设备新度评价研究
3.
Comprehensive Evaluation on A Green-process Program Based on Fuzzy Integral;
基于模糊积分的绿色工艺规划综合评判
4) fuzzy integration
模糊积分
1.
Risk management of forest fire based on assessment model built with fuzzy integration model.;
基于模糊积分评估模型的林火灾害风险管理研究
2.
ATR Performance Evaluation with the Application of Fuzzy Integration;
应用Sugeno模糊积分的目标识别效果评估(英文)
3.
In this paper, fuzzy integration method is applied to evaluation of town gas explosion hazards.
本文利用模糊积分对燃气爆炸进行危险性评价,使那些危险性大而权重小的单元通过积分可以产生较大的贡献。
5) fuzzy integrals
模糊积分
1.
In this article we combine the fuzzy C-means algorithm with fuzzy measures and fuzzy integrals and apply the two algorithms to the medicinal pathological image segmentation.
本文将经典的模糊C-均值聚类算法和模糊测度和模糊积分结合起来,并将这两种算法应用于医学病理图象的分割。
2.
Based on the analysis of the assessment system of dams observed behavior, a new way for studying large dam s observed behavior assessment by means of applying fuzzy integrals assessment model is provided.
在分析了大坝实测性态评价体系的基础上,将模糊积分评判模型引入到大坝实测性态评价中来,为客观定量地研究大坝实测性态评价方法提供了一条新的途径。
6) choquet fuzzy integral
Choquet模糊积分
1.
After introducing the concept of fuzzy measures and Choquet fuzzy integral, information fusion for target recognition can turn into generalized Lebesgue integral of recognition result with respect to the degree of importance of source.
引入模糊测度和 Choquet模糊积分的概念后,信息融合目标识别可转化为各信源识别结果关于信源重要程度的广义 Lebesgue积分。
2.
In this paper,a new Fisher discriminant analysis based on Choquet fuzzy integral is introduced.
文中引进一种新的非线性判别分析—基于Choquet模糊积分的Fisher判别分析,该基于Choquet模糊积分的Fisher判别分析方法可充分考虑到输入的各指标之间的交互作用,当模糊测度μ具有可加性时,基于Choquet模糊积分的Fisher判别分析方法就是经典的Fisher判别分析。
3.
By using Choquet fuzzy integral,the MOD and SOD models are established based on interaction of attribute,from which the attribute weights can be derived.
利用Choquet模糊积分作为集结算子,构建了基于属性关联的M OD和SOD模型。
补充资料:打模糊
1.装糊涂。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条