说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 分式布朗插值
1)  fBm interpolation
分式布朗插值
1.
This paper mainly probes into a method of using fBm interpolation to interpolate the limited logging data between wells randomly, and gets the acoustic logging profile between wells.
文章主要探讨用分式布朗插值的方法对有限的测井资料进行随机井间插值,作出井间区域的声波测井剖面,从而将测井的“一孔之见”推广开去,既可以描述储集层的非均质性的空间分布,又为油气检测提供了一个新的辅助手段。
2)  Lagrange interpolating polynomial
拉格朗日插值多项式
1.
A secret image sharing scheme based on Lagrange interpolating polynomial;
基于拉格朗日插值多项式的秘密图像共享方案
2.
A layered group key distribution scheme based on the Lagrange interpolating polynomial has been proposed.
基于拉格朗日插值多项式给出一种适用于具有层次结构特点的群组通信系统的层次式组密钥分发方案。
3)  Lagrange interpolation formula
拉格朗日插值公式
4)  Lagrange interpolation polynomial
拉格朗日插值多项式
5)  Lagrange Polynomial interpolating
拉格朗日多项式插值
6)  Lagrange interpolation polynomial
拉格朗日插值公式
1.
Lagrange interpolation polynomial is very useful in numerical analysis.
如何改进拉格朗日插值公式使之更好地逼近被插函数是当时数学家思考的一个重要问题,波莱尔即为其中之一。
补充资料:拉格朗日插值多项式逼近
      拉格朗日插值多项式是一种最常见的多项式插值法,也是一种最常用的逼近工具。设??(x)是定义在区间[α,b]上的函数,又设x1,x2,...,xn是[α,b]上的n个互不相同的点。早在1795年J.-L.拉格朗日就证明:如果在点xK处的函数值yK=??(xK)(k=1,2,...,n)是已知的,则存在惟一的次数不高于n-1的代数多项式ln(??,x)使得
  。倘若记,则ln(??,x)有表达??常称ln(??,x)为??(x)的拉格朗日插值多项式,为其结点组。若??(x)是个次数不高于n-1的代数多项式,则ln(??,x)=??(x)。ln(??,x)的几何意义是有且仅有一条n-1次代数曲线通过平面上预先给定的 n个横坐标互不相同的点。又称为拉格朗日插值的基本多项式。不论在理论上还是在实用上,拉格朗日插值多项式都是一种重要的逼近工具。假设??(x)在 [α,b]上存在n阶导数,则ln(??,x)逼近??(x)的偏差有这样的表达式式中ξ是[α,b]中某一与x有关的点。当然,这里对被逼近函数的要求太高,研究低度光滑函数的插值逼近是很重要的。
  
  对于给定的结点组记 常称λn(x)为此结点组的勒贝格函数,λn为其勒贝格常数。如果记En-1(??)为次数不高于n-1的代数多项式对连续函数??(x)的最佳逼近值,则 而且有因此,应该选取使λn尽可能小的结点组,或说让诸结点在[α,b]上均匀分布是合理的。但事实并非这样,即使对于函数??(x)=|2x-α-b|,此时相应的ln(??,x)也不能实现对??(x)的逼近。至于选择其他结点组,仅要求函数连续也未必可行。因为G.费伯曾经证明,对于[α,b]上的任意一列结点组,n =1,2,...,都有[α,b]上的连续函数??(x),使得相应的拉格朗日插值多项式序列在[α,b]上不一致收敛于??(x)。此外,还有
  
  
  
  因此,选择使勒贝格函数λn(x)关于 n的增长速度接近于ln n的结点组序列是人们所期望的。最常用的是在[-1,1]上取切比雪夫多项式Tn(x)=cos(n arccosx)的零点全体作为结点组。
  
  其相应的勒贝格常数不超过 于是只要函数??(x)合乎迪尼-李普希茨条件则它的拉格朗日插值多项式ln(??,x)在n →∞时,在[-1,1]上就一致收敛于??(x)。这里 ω(??,δ)是??(x)的连续性模。用这种结点组的拉格朗日插值多项式逼近连续函数,其逼近度与最佳逼近值相比较,还有一个对数因子。如何修改插值多项式的构造以改善它的逼近性能,是人们所重视的问题。修改的办法很多,常用的是由С.Η.伯恩斯坦所提出的线性求和法。例如,令
  x=cosθ (0≤θ≤π),定义
  或令,定义如仍取Tn(x)的零点全体作为结点组,则存在绝对常数с,使得在[-1,1]上都有这说明,上述两种多项式对于低度光滑函数都有良好的逼近性能。
  
  代替有限区间上的一致逼近,也可以考虑积分平均逼近,以及无限区间上的逼近。代替切比雪夫多项式的零点,可以考虑用雅可比多项式的零点作结点。而在周期的情况下,代替代数多项式的插值逼近自然以三角多项式的插值逼近为宜。此时,用周期区间的均匀分布的结点组是较合适的,可以建立类似于傅里叶级数部分和逼近函数的结果。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条