1) surface developing algorithm
曲面展开算法
1.
The former can be converted into plane with surface developing algorithm,while the latter can be divided into planes with surface dividing algorithm.
把曲面分为可展曲面和不可展曲面,对可展曲面用曲面展开算法展成平面,对不可展曲面用曲面分割算法转化成平面片,在平面上运用Delaunay三角划分法进行网格划分,然后把网格节点反映射到曲面上,从而实现任意曲面的三角形网格划分。
2) surface flattening
曲面展开
1.
This paper presented a dart-cutting algorium,which grounded on the energy-based three-dimensional surface flattening.
本文在基于能量模型的曲面展开算法基础上,研究了服装曲面上省道的添加算法。
2.
This paper presented an improvement method for three-dimensional surface flattening,compared to other surface flattening algorithms based on spring-mass model.
相对于其他基于弹簧-质点模型的曲面展开算法,本文提出了改进的曲面展开方法:首先,采用三角面片模型来表达三维曲面;其次,基于能量的弹簧质点模型将三维曲面展开为二维面片,在此模型中,面料的经纬向的机械性能替换原有的弹簧力。
3.
According to the latest theoretic study of the surface flattening, several typical methods for surface fattening are elaborated in detailed from three aspects; geometry flattening, mechanics flattening and geometry flattening/mechanics revision including the principles, characters and applications.
从几何展开、力学展开和几何展开/力学修正等三个方面论述了具有代表性的曲面展开方法,包括它们的原理、特点和工程应用情况,并提出了未来的发展方向。
3) surface development
曲面展开
1.
Parametric trimmed surface development is primarily used for flattening a 3D surface into a corresponding 2D pattern or surface.
提出一种基于物理模型的参数化曲面展开方法 。
5) surface spreading
曲面展开
1.
To improve the precision of one-step forming simulation and avoid shearing closedown of unit,the currently used method was improved by proposing the model of surface spreading four-node isoparametric membrane element and adopting partial reducing integral technology.
为了进一步提高一步成形模拟的计算精度和避免单元的剪切闭锁,提出改进型曲面展开四节点等参膜单元模型,即在单元内力计算中采用了局部减缩积分技术,对现有算法进行了改进。
6) surface expandedness
曲面展开
1.
Creating technology of carving work based of fractal and surface expandedness;
基于分形和曲面展开的雕刻作品生成技术
补充资料:单侧曲面与双侧曲面
单侧曲面与双侧曲面
one - sided and two - sided surfaces
单侧曲面与双侧曲面(帐.幼山月.砚加。一浦山吐,叮肠。污;o月.oc”POHHNe.刀”yc功PollH“e no.epxltocT.) 以不同的方式放置于外围空间中的两类曲面(单侧放置(one一sid留泌ition)和双侧放置(t场U.si山刘p沈i石on)).例如,柱面是双侧曲面,而M施如带(M冬biuss州P)是单侧曲面.这两类曲面之间的特征区别是,柱面的边界由两条曲线组成,而M6bi留带的边界是单独的一条曲线.在封闭曲面中,球面(sPhere)和环面(torus)是双侧的,而X】曲1曲面(Kleins班鱼沈)是单侧的.作为双侧放置和单侧放置的例子,可以引用圆周在M6blus带中的嵌人.这样,圆周“(见图)是单侧曲线,而圆周刀是双侧曲线(一般说来,任何无定向道路(d留丽enii飞path)单侧地落在曲面中). 霍重)薰黔 更确切地说,单侧曲面和双侧曲面是以不同的方式嵌人在(维数高过1的)外围空间中的两类流形.双侧性和单侧性与可定向性和不可定向性(见定向(。山nta石on))有关,但是它们不是曲面的内在性质,而依赖于外围空间.例如,存在可定向的双侧曲面:梦C=夕,护C=R,;不可定向的双侧曲面:’R尸ZxOCR PZ xs,;可定向的单侧曲面:尹二S,xs,c= RPZx夕;不可定向的单侧曲面:R尸,CR尸(这里,梦是球面,产是环面,R尸“是射影平面,RP3是射影空间,夕是R尸上迷失方向的路径). 在可定向空间(例如,R”)中一个超曲面是可定向的,当且仅当它是双侧的. 假定一个法向量沿着浸人在某个空间中的光滑曲面上一条闭曲线移动,并保持它是曲面的法向量.如果不管如何选择闭曲线,当回到出发点时法向量的指向与它原来的指向总是一致的,则称该曲面是双侧的(t认。一sid记);反之,则称它为单侧的(o优一51山沮).更一般地,曲面n是双侧放置的当且仅当它的法丛(nonl以1 bundk)是平凡的(在这个丛里存在一个非零截面).反之,单侧曲面的法丛是非平凡的:在n上存在一条曲线使得法丛在它上面的限制是一条M6bius常. 空间N”中每一个(超)曲面M”一’在局部上都把尸分成两部分,即任意一点x任M月一’C=N“有一个邻域U cN,使得U由两个分支U’和U“组成,而U门M“一’属于它们的公共边界.在另一方面,M”一’在N”中的充分小邻域(如果M在N中是封闭的)或者是一个分支,或者有两个分支,其边界包含M在内.在第一种情形,(超)曲面M”一’也称为单侧的(one-51山沮),在第二种情形,称为双侧的(腼、51山过).因而,虽然曲面在局部上是双侧的,但是在大范围上它可能是单侧的.反过来,双侧曲面未必分隔它在空间中的邻域. 对于落在N“+’中的双侧曲面M”,任意一条封闭曲线:与M”在N”十’中的相交指数(同调论中的)(运如加叨。n in(七x(in holnofogy))满足方程(:,M”)二Olllod 2.但是,如果M”是单侧的,则对某条曲线:日丫+’(:,M·)笋0.这个事实(与法向量的移动及邻域的分隔一起)也能取作单侧性和双侧性的定义.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条