1) exchange energy
交换作用能
2) exchange interaction energy
交换相互作用能
3) exchange interaction
交换作用
1.
Role of exchange interaction in the magnetic and magneto-optic properties of CeF_3 crystal;
交换作用对CeF_3晶体磁性和磁光效应的影响
2.
Using the Stoner-Wohlfarth model and stochastic cellular automata and adopting demagnetizing field and exchange interaction,the hysteresis loop of Co thin film has been simulated.
利用Stoner-Wohlfarth模型,概率型元胞自动机的模型和算法,在考虑了退磁场和交换作用的情况下对薄膜的磁滞回线进行了模拟,比较了温度以及和易轴取向变化时磁化曲线以及剩磁矩形比和矫顽力的不同及变化趋势。
3.
The dependence of coercivity on exchange interaction between FePt grains was discussed, and it was observed that the coercivity increasing prominently while exchange interaction factor decreases below 0.
通过分析矫顽力与 FePt颗粒之间的交换作用常数的依赖关系,发现当FePt颗粒之间的交换作用常数小于0。
4) superexchange interaction
超交换作用
1.
The superexchange interactions between d 5-d 5 unpaired electrons were also discu ssed, and the antiferromagnetic coupling of the titl.
基于密度泛函理论下的破损态方法 ,着重讨论了双核Fe(III) 2 的d5 d5 电子通过氧桥的超交换作用 。
5) double-exchange interaction
双交换作用
6) double exchange effect
双交换作用
1.
The photoinduced resistivities (Δρ) of films on the MgO and SrTiO3 substrates have a maximum and a minimum due to the competition of double exchange effect and polaron effect.
在低温金属相,光诱导致使电阻率降低;高温绝缘相光诱导则使得电阻率升高,在MgO和SrTiO3衬底上薄膜的光电导Δρ具有极大值和极小值,分析表明这一现象的出现可归结于双交换作用和极化子效应。
补充资料:交换作用
全同微观多粒子系统里粒子间的一种等效相互作用。它反映了全同粒子的不可分辨性,纯属量子效应,没有与之对应的经典概念。
一个N(>1)粒子所构成的量子系统,其状态以波函数ψ(x1,x2,...,xN,t)描述,xi为粒子i的坐标,包括空间坐标和自旋坐标;还可能包括其他坐标,如核子的同位旋等。按照量子力学理论,全同粒子系统的波函数是薛定谔方程 (1)
在必要的边界条件、初始条件和统计对称性条件 (2)
限制下的解。哈密顿算符彑由各粒子的动能、 在外场中的位能和各粒子间的相互作用能构成。这些能量项都具有经典解释,这种相互作用称为"普通相互作用"。式(2)表明,交换任一对粒子i和j时,波函数或者完全不变(玻色子系统),或者仅改变符号(费密子系统)。可见,在全同粒子系统中,各个粒子的运动是互相关联的,不能对每个粒子做单独的描述,只能做整体的描述,即粒子间存在着一种相互作用。这种与全同粒子不可分辨性等效的粒子间相互作用,就称为交换作用。
当采用哈特里-福克近似法求解薛定谔方程时,交换作用显示得非常直观。以费密子系统为例,其定态哈特里-福克近似波函数为 (3)
如果粒子i的动能与在外场中的位能之和为彑0(xi),粒子对i、j间的相互作用能为憕(xi,xj),则系统在状态(3)下的平均能量为 (4)
式中
倘若把式(3)形式地理解为粒子i处于═i(xi)(i=1,2,...,N)的状态,则 E就可视为粒子i的动能与在外场中位能之和的平均值,Cij为粒子对i、j间相互作用能的平均值,然而Aij却没有经典的对应量。根据交换作用的定义,它就应当是粒子对i、j间的交换能。
对于一般情形,采用二次量子化表象 (8)
也可将交换作用表述为粒子间相互作用的形式,此时不仅有二体交换作用还有三体和四体交换作用。式中a抜和ai分别为粒子i的产生算符和消灭算符。
交换作用虽然是一种等效的粒子间相互作用,却为全同粒子不可分辨性所导致的粒子间的关联效应描绘出一幅直观的物理图像,因而是一个很有用的概念。据此,多电子原子和分子的光谱,分子和化合物的化学键,固态物质中的电子特征及序磁性,都可以得到很清晰的描述和解释。
对于非全同性粒子系统,也可用交换作用描述因交换各种介子或虚粒子而出现的种种"力",如原子核中的某些核力等。
一个N(>1)粒子所构成的量子系统,其状态以波函数ψ(x1,x2,...,xN,t)描述,xi为粒子i的坐标,包括空间坐标和自旋坐标;还可能包括其他坐标,如核子的同位旋等。按照量子力学理论,全同粒子系统的波函数是薛定谔方程 (1)
在必要的边界条件、初始条件和统计对称性条件 (2)
限制下的解。哈密顿算符彑由各粒子的动能、 在外场中的位能和各粒子间的相互作用能构成。这些能量项都具有经典解释,这种相互作用称为"普通相互作用"。式(2)表明,交换任一对粒子i和j时,波函数或者完全不变(玻色子系统),或者仅改变符号(费密子系统)。可见,在全同粒子系统中,各个粒子的运动是互相关联的,不能对每个粒子做单独的描述,只能做整体的描述,即粒子间存在着一种相互作用。这种与全同粒子不可分辨性等效的粒子间相互作用,就称为交换作用。
当采用哈特里-福克近似法求解薛定谔方程时,交换作用显示得非常直观。以费密子系统为例,其定态哈特里-福克近似波函数为 (3)
如果粒子i的动能与在外场中的位能之和为彑0(xi),粒子对i、j间的相互作用能为憕(xi,xj),则系统在状态(3)下的平均能量为 (4)
式中
倘若把式(3)形式地理解为粒子i处于═i(xi)(i=1,2,...,N)的状态,则 E就可视为粒子i的动能与在外场中位能之和的平均值,Cij为粒子对i、j间相互作用能的平均值,然而Aij却没有经典的对应量。根据交换作用的定义,它就应当是粒子对i、j间的交换能。
对于一般情形,采用二次量子化表象 (8)
也可将交换作用表述为粒子间相互作用的形式,此时不仅有二体交换作用还有三体和四体交换作用。式中a抜和ai分别为粒子i的产生算符和消灭算符。
交换作用虽然是一种等效的粒子间相互作用,却为全同粒子不可分辨性所导致的粒子间的关联效应描绘出一幅直观的物理图像,因而是一个很有用的概念。据此,多电子原子和分子的光谱,分子和化合物的化学键,固态物质中的电子特征及序磁性,都可以得到很清晰的描述和解释。
对于非全同性粒子系统,也可用交换作用描述因交换各种介子或虚粒子而出现的种种"力",如原子核中的某些核力等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条